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Abstract Occupancy grids are a common framework in robotics for creating a spa-
tial map of the environment. Traditional grid mapping algorithms assume that map
voxel occupancies are independent of each other. In addition, they use a map rep-
resentation where each voxel stores a single number representing the occupancy
probability. This leads to inconsistencies in the map and, more importantly, con-
flicts between the map error and the reported confidence values, resulting in critical
cases of overconfidence. Such discrepancies pose challenges for planners that rely
on the generated map for collision avoidance. This paper studies occupancy grids
from a planning perspective and proposes a novel algorithm for grid mapping in the
presence of noisy measurements. By storing richer data at each voxel, the new grid
representation enables an accurate estimate of the variance of occupancy. We show
that, in addition to achieving maps that are more accurate than traditional meth-
ods, the proposed filtering scheme demonstrates a much higher level of consistency
between its error and the reported confidence.

1 Introduction
Consider a quadrotor equipped with a forward-facing stereo camera flying in an
obstacle-laden environment tasked to reach a goal. In order to ensure the safety of
the system and avoid collisions, the robot needs to create a representation of obsta-
cles, which we refer to as the map, and incorporate it in the planning framework.
Due to the noise caused by using imperfect sensors and models, the robot requires a
probabilistic representation of the map that is able to capture the uncertainty of the
environment. In order to plan trajectories using such a probabilistic map, the planner
needs to be aware of not only the occupancy value estimates but also of how much
these values can be trusted. In particular, this trust (or confidence) is important when
considering sensors with high noise, such as stereo cameras with small baselines.
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This paper presents an algorithm that creates a map which, in addition to the most
likely occupancy values, encodes the confidence (trust) associated with these values.

Grid-based structures are among the most common representations of the envi-
ronment when dealing with range sensors [25]. Typically, each grid voxel contains
binary information indicating whether the voxel is free or occupied. In a slightly
richer format, each voxel contains the probability of being occupied. In the main
body of literature, occupancy grids are used to store binary occupancies updated by
the log-odds method [21, 22], which is discussed in detail in Sec. 3. Even though the
log-odds-based occupancy grids have enjoyed success in a variety of applications,
these methods, especially when coping with noisy sensors such as sonar and stereo
cameras, suffer from three main issues:

A) The occupancy of each voxel is updated independently of the rest of the map.
This is a well-known problem [21] which has been shown to lead to conflicts
between the map and measurement data. In particular, when the sensor is noisy
or has a large field of view, there is a clear coupling between voxels that fall
into the field of view of the sensor.

B) The log-odds methods rely on the “inverse sensor model” (ISM), which needs
to be hand-engineered for each sensor and a given environment.

C) In order to represent the voxel occupancy, each voxel stores a single number.
As a result, there is no consistent confidence or trust value to help the planner
reason about the reliability of the estimated occupancy.

In this paper, we propose a method that partially relaxes these assumptions, gen-
erates more accurate maps, and provided a more consistent filtering mechanism than
prior approaches. The highlights and contributions of this work are as follows:

1. The main assumption in traditional occupancy grid mapping is (partially) re-
laxed. We take into account the interdependence between voxels within the
same measurement cone at every step. Further, the proposed method relaxes
the binary assumption on the occupancy level and is able to cope with maps
where each voxel is only partially occupied by obstacles.

2. We replace the ad-hoc inverse sensor model by a novel “sensor cause model”
which is computed based on the forward sensor model in a principled manner.

3. In addition to the most likely occupancy value for each voxel, the proposed map
representation contains confidence values (e.g. variance) of voxel occupancies.
The confidence information is crucial for planning over grid maps. We incorpo-
rate the sensor model and its uncertainties in characterizing the map accuracy.

4. While the majority of approaches that relax the voxel-independence assumption
are batch methods, our method does not require logging of the data in an offline
phase. Instead, the map can be updated online as the sensory data are received.

In our experiments, our method achieves an improvement over traditional ap-
proaches of up to 30% in absolute error and up to two orders of magnitudes better
variance consistency, according to the proposed inconsistency measure. We believe
that the map representation introduced here and the probabilistic map-update algo-
rithm provide a significant step towards uncertainty-aware safe planning, a crucial
component to enabling fast navigation in uncertain environments.
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2 Related Work
The first application of occupancy grids in robotics dates back to Moravec [11] and
Elfes [2] and has since been widely used in robotics. Thrun et al. [21], Stachniss
[18], and Thrun et al. [22] discuss many variants of these methods.

Grid-based maps have been constructed using a variety of ranging sensors, that
include stereo-cameras [9], sonars [26], laser range finders [19], and fusion of
thereof [11]. Their structure has been extended to achieve more memory-efficient
maps [25]. There have also been methods that extend grid-based mapping to store
richer forms of data, including the distance to obstacle surfaces [13], reflective prop-
erties of environment [4], and color/texture [12]. The main method used to updat-
ing the occupancy values of the voxels was presented by Thrun et al. [22] and is
based on the log-odds approach. We provide a detailed description of this method in
Sec. 3. Another class of mapping methods that have shown great success is the class
of Gaussian Process-based mapping methods (e.g., [6, 7, 14, 15, 17, 24]). These
methods do not rely on voxel grids but model the occupied spaces continuously.
Furthermore, they take into account the spatial correlations between occupancy of
different regions of the map.

Different researchers have studied the drawbacks of the log-odds approach in
occupancy grids and proposed methods to alleviate them [3, 8, 10, 16, 20, 23].
All these methods attempt to mitigate the negative effects caused by the incorrect
voxel-independence assumption in mapping. In particular, Thrun [20] proposes a
grid-mapping method using forward sensor models, which takes into account all
voxel dependencies and generates maps of higher quality compared to maps result-
ing from ISM. However, this method requires the measurement data to be collected
offline. Then, it runs the expectation-maximization (EM) algorithm on the full data
to compute the most likely map. Hähnel et al. [3] extend the grid-based mapping
methods to dynamic environments using a similar sensor model to the one used in
this paper. However, this method assumes accurate measurements (e.g. coming from
a laser range finder). It also uses EM to compute the map, which limits the result to
the most likely values and does not provide any confidence measure on the reported
values. In this paper, we propose a mapping method that is online and can cope with
high-noise range measurements by incorporating the noise into the model. More im-
portantly, the proposed method computes a confidence value for the estimate which
can be very beneficial for planning purposes.

3 Occupancy grid mapping using inverse sensor models
Most occupancy grid mapping methods decompose the full mapping problem into
many binary estimation problems on individual voxels assuming full independence
between voxels. This assumption leads to inconsistencies in the resulting map. In
this section, we discuss the method and these assumptions.

Let G = [G1, · · · ,Gn] be an n-voxel grid overlaid on the 3D (or 2D) environment,
where Gi ∈ R3 is a 3D point representing the center of the i-th voxel of the grid in
the global coordinate frame. An occupancy map m = [m1, · · · ,mn] is defined as a set
of values over this grid. We start with a more general definition of occupancy where
mi ∈ [0,1] denotes what percentage of a voxel is occupied. mi = 1 when the i-th
voxel is fully occupied and mi = 0 when it is free. For maps where occupancy can
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only be 0 or 1, we use the notation binmi for the occupancy of voxel i to explicitly
show that the occupancy is binary, i.e., binmi ∈ {0,1}.

The full mapping problem is defined as estimating map m based on obtained
measurements and robot poses. We denote the sensor measurement at the k-th time
step by zk and the sensor configuration at the k-th time step by xk. As we will discuss
further in Section 5, xk characterizes the field of view (e.g., a pixel cone or a mea-
surement ray when dealing with a single pixel sensor). Formulating the problem in
a Bayesian framework, we compress the information obtained from past measure-
ments z0:k = {z0, · · · ,zk} and x0:k = {x0, · · · ,xk} to create a probability distribution
(belief) b̄m

k on the map m.

b̄m
k = p(m|z0:k,x0:k) (1)

However, due to challenges in storing and updating such a high-dimensional be-
lief, grid mapping methods start from individual cells (marginal distributions).

Assumption 1. Collection of marginals: The map pdf is represented by the collec-
tion of individual voxel pdfs (marginal pdfs), instead of the full joint pdf.

bm
k ≡ (bmi

k )n
i=1, bmi

k = p(mi|z0:k,x0:k) (2)

where n denotes the number of voxels in the map.

To compute the marginal bmi
in a recursive manner, the method starts with ap-

plying Bayes’ rule.

bmi

k = p(mi|z0:k,x0:k) =
p(zk|mi,z0:k−1,x0:k)p(mi|z0:k−1,x0:k)

p(zk|z0:k−1,x0:k)
(3)

The main incorrect assumption is applied here:

Assumption 2. (Incorrect) Measurement independence: Standard approaches as-
sume that a single voxel is sufficient (independent of other voxels) to characterize
the measurement. Mathematically,

p(zk|mi,z0:k−1,x0:k)≈ p(zk|mi,xk) (4)

Remark 1. Note that Assumption 2 (Eq. 4) would be precise if conditioning was
over the whole map. In other words,

p(zk|m,z0:k−1,x0:k) = p(zk|m,xk) (5)

is correct. But, when conditioning on a single voxel, this approximation could be
very inaccurate, because a single voxel mi is not enough to generate the likelihood
of observation z. For example, there might even be a wall between mi and the sensor,
and clearly mi alone cannot tell what range will be measured by the sensor in that
case.

When dealing with noisy sensors (such as stereo cameras) or with noise-free
sensors with large measurement cones (such as sonar), this assumption leads to map
conflicts and estimation inconsistencies.
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Inverse sensor model: Following Assumption 2, one can apply Bayes’ rule to
Eq. 4

p(zk|mi,xk) =
p(mi|zk,xk)p(zk|xk)

p(mi|xk)
(6)

which gives rise to the concept of the inverse sensor model (ISM), i.e., p(mi|zk,xk).
The inverse sensor model describes the occupancy probability given a single mea-
surement. The model cannot be derived from a sensor model. However, depending
on the application and the utilized sensor, ad-hoc models can be hand-engineered.
The reason to create this model is that it leads to an elegant mapping scheme on
binary maps as follows.

Plugging (4) and (6) into (3), we obtain:

bmi

k = p(mi|z0:k,x0:k) =
p(mi|zk,xk)p(zk|xk)p(mi|z0:k−1,x0:k)

p(mi|xk)p(zk|z0:k−1,x0:k)
(7)

Given that the robot’s motion does not affect the map:

bmi

k = p(mi|z0:k,x0:k) =
p(mi|zk,xk)p(zk|xk)p(mi|z0:k−1,x0:k−1)

p(mi)p(zk|z0:k−1,x0:k)
(8)

Assumption 3. Binary occupancy: To complete the recursion, traditional grid-
based methods further assume that the occupancy of voxels are binary,
i.e., binmi ∈ {0,1}. Thus, p(binmi = 1) = 1− p(binmi = 0).

According to Assumption 3, one can define odds ri
k of occupancy and compute it

using Eq.(8):

ri
k :=

p(binmi = 1|z0:k,x0:k)

p(binmi = 0|z0:k,x0:k)
=

p(binmi = 1|zk,xk)p(binmi = 0)
p(binmi = 0|zk,xk)p(binmi = 1)

ri
k−1 (9)

Remark 2. Relying on Assumption 3 and using odds, removes the terms which are
difficult to compute from the recursion in Eq. (8).

Further, denoting log-odds as li
k = logri

k, we can simplify the recursion as:

li
k = li

k−1 + li
ISM− li

prior (10)

where, li
ISM = log(p(binmi = 1|zk,xk)p(binmi = 0|zk,xk)

−1) are the log-odds of ISM
at voxel i, and li

prior = log(p(binmi = 1)p(binmi = 0)−1) are the log-odds of prior.
ISM is often hand-engineered for a given sensor/environment. Fig. 1 shows the typ-
ical form of the ISM function.

4 Confidence-rich Representation
In our map representation we store the probability distribution of mi in each voxel i.
Variable mi in this paper can be interpreted in two ways:

1. In the more general setting, mi ∈ [0,1] directly represents the occupancy level
(the fraction of voxel i that is occupied by obstacles.). The proposed method can
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model continuous occupancy and Assumption 3 in traditional occupancy mapping
can be relaxed.
2. If the underlying true map is assumed to be a binary map (denoted by binm),

the occupancy of the i-th voxel binmi ∈ {0,1} is distributed as Bernoulli distribution
binmi ∼ Bernoulli(mi). In other words, in this case mi refers to the parameter of the
Bernoulli distribution. While ISM-based mapping methods store mi as a determinis-
tic value, we estimate mi probabilistically based on measurements and store its pdf
at each voxel. Note that in this setting, binmi ∈ {0,1}, where mi ∈ [0,1] represents
the occupancy probability, i.e., mi

k = p(binmi = 1|z0:k,x0:k).

Problem description: Given the above-mentioned representation, we aim at
estimating m based on noisy measurements by computing its posterior distribution.
We define three beliefs over the map: (1) full map belief b̄m

k = p(m|z0:k,x0:k), (2)
marginal cell beliefs bmi

k = p(mi|z0:k,x0:k), and (3) the collection of marginals bm
k =

(bmi

k )M
i=1

1. Similar to ISM-based methods, for mapping we maintain and update the
collection of marginals bm

k . To do so, we derive the following items:

1. Ranging sensor model: Given that the obstacles are described by a stochastic
map, we derive a ranging sensor model, i.e., the probability of obtaining measure-
ment z given a stochastic map and robot location: p(zk|xk,bm

k ). This model will be
used in the map update module.
2. Recursive density mapping: We derive a recursive mapping scheme τ that

updates the current density map based on the last measurements

bmi

k+1 = τ
mi
(bm

k ,zk+1,xk+1). (11)

The fundamental difference with ISM-mapping is that the evolution of the i-th voxel
depends on other voxels as well. Note that the input argument to τmi

is the collection
of all voxel beliefs bm, not just the i-th voxel belief bmi

.
3. While planning is beyond the scope of this paper, we briefly discuss how plan-

ning can benefit from this enriched map data and consistent estimation mechanism
to generate actions that actively reduce mapping uncertainty and lead to safer paths.

Overall, this method relaxes Assumptions 2 and 3 of the ISM-based mapping.

5 Range-sensor Modeling
In this section, we model a range sensor when the environment representation is a
stochastic map. We focus on passive ranging sensors like stereo cameras, but the
discussion easily translates to active sensors as well.

Ranging pixel: Let us consider an array of ranging sensors (e.g., disparity pix-
els). We denote the camera center by xcam, the 3D location of the i-th pixel by v, and
the ray emanating from xcam and passing through v by x = (xcam,v). Let r denote the
distance between the camera center and the closest obstacle to the camera along ray
x. For a stereo camera, the range r is related to the measured disparity z as:

1 More precisely, in these definitions the variable b refers to the set of parameters that characterize
the probability distributions. So, we will treat b as a vector (deterministic or random depending on
the context) in the rest of the paper.
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z = r−1 f db (12)

where f is the camera’s focal length and db is the baseline between two cameras on
the stereo rig. In the following, we focus on a single pixel v and derive the forward
sensor model p(z|x,bm).

Pixel cone: Consider the field-of-view of pixel v. More precisely, it is a narrow
3D cone with apex at x and boundaries defined by pixel v. Also, for simplicity, one
can consider just a ray x going through camera center x and the center of pixel v.
The pixel cone Cone(x) refers to the set of voxels in map m that fall into this cone
(or lie on ray x). We denote this set by C= Cone(x).

invSensorModel.png

Fig. 1 Typical inverse sensor model for a range
sensor. It returns the occupancy probability for
voxels on the measurement ray/cone based on
their distance to the camera.

Grid.png

Fig. 2 The cone formed by two red lines depicts
the field-of-view of pixel v. The disparity mea-
surement on pixel v can be caused by light bounc-
ing off any voxel (e.g., the red one) in the pixel
cone and reaching the image plane.

Local vs global indices: For a given ray x, we order the voxels along the ray
from closest to farthest from the camera. Notation-wise, il ∈{1, · · · ,‖C‖} represents
the local index of a voxel on ray x. Function ig = g(il ,x) returns the global index ig

of this voxel in the map.
Cause variables: The disparity measurement on pixel v could be the result of

light bouncing off any of voxels in the cone C = Cone(x) (see Fig. 2). Therefore,
any of these voxels are a potential cause for a given measurement. In the case that
the environment map is perfectly known, one can pinpoint the exact cause by find-
ing the closest obstacle to the camera center. But, when the knowledge about the
environment is partial and probabilistic, the best one can deduce about causes is
a probability distribution over all possible causes in the pixel cone C = Cone(x).
These causes will play an important role (as hidden variables) in deriving the sensor
model for stochastic maps.

Cause probability: To derive the full sensor model, we need to reason about
which voxel was the cause for a given measurement. For a voxel c ∈ C(x) to be the
cause, two events need to happen: (i) Bc, which indicates the event of light bouncing
off voxel c and (ii) Rc, which indicates the event of light reaching the camera from
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voxel c.
p(c|bm) = Pr(Bc,Rc|bm) = Pr(Rc|Bc,bm)Pr(Bc|bm) (13)

Bouncing probability: To compute the bouncing probability, we rely on the fact
that Pr(Bc|mc) = mc (by the definition). Note that Pr(Bc|mc,bm) = Pr(Bc|mc).

Pr(Bc|bm) =
∫ 1

0
Pr(Bc|mc,bm)p(mc|bm)dmc =

∫ 1

0
mcbmc

dmc = Emc = m̂c

Reaching probability: For the ray emanating from voxel c to reach the image
plane, it has to go through all voxels on ray x between c and the sensor. Let cl

denotes local index of voxel c along the ray x, i.e., cl = g−1(c,x), then we have:

Pr(Rc|Bc,bm) = (1−Pr(Bg(cl−1,x)|bm))Pr(Rg(cl−1,x)|Bg(cl−1,x),bm) (14)

=
cl−1

∏
l=1

(1−Pr(Bg(l,x)|bm)) =
cl−1

∏
l=1

(1− m̂g(l,x))

Sensor model with known cause: Assuming the cause voxel for measurement
z is known, the forward sensor is typically modeled as:

z = h(x,c,nz) = ‖Gc− xcam‖−1 f db +nz, (15)

where, nz ∼N (0,V ) denotes the observation noise, drawn from a zero-mean Gaus-
sian with variance V . We can alternatively describe the observation model in terms
of pdfs as follows:

p(z|x,c) = N (‖Gc− xcam‖−1 f db,V ) (16)

Sensor model with stochastic maps: The sensor model given a stochastic map
can be computed by incorporating hidden cause variables into the formulation:

p(z|x,bm) = ∑
c∈C(x)

p(z|x,c;bm)p(c|bm) (17)

= ∑
c∈C(x)

N (‖Gc− xcam‖−1 f db,V )m̂c
cl−1

∏
l=1

(1− m̂g(l,x))

6 Confidence-Augmented Grid Map
In this section, we derive the recursive mapping algorithm described in Eq. (11).
This mapping algorithm τ can not only reason about the occupancy at each cell
but also about the confidence level of this value. As a result, it enables efficient
prediction of the map that can be embedded in planning, resulting in safer plans.

To compute the belief of the i-th voxel, denoted by bmi

k = p(mi|z0:k,x0:k), we bring
the cause variables into the formulation.

bmi

k = p(mi|z0:k,x0:k) = ∑
ck∈C(x)

p(mi|ck,z0:k,x0:k)p(ck|z0:k,x0:k) (18)

= ∑
ck∈C(x)

p(mi|ck,z0:k−1,x0:k)p(ck|z0:k,x0:k)
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= ∑
ck∈C(x)

p(ck|mi,z0:k−1,x0:k)

p(ck|z0:k−1,x0:k)
p(ck|z0:k,x0:k)bmi

k−1

It can be shown that bm
k−1 is a sufficient statistic [5] for the data (z0:k−1,x0:k−1) in

the above terms. Thus, we can rewrite (18) as:

bmi

k = ∑
ck∈C(x)

p(ck|mi,bm
k−1,xk)

p(ck|bm
k−1,xk)

p(ck|bm
k−1,zk,xk)bmi

k−1 (19)

In the following, we make the assumption that the map pdf is sufficient for com-
puting the bouncing probability from voxel c (i.e., one can ignore voxel i given the
rest of the map.) Mathematically, for ck 6= i, we assume:

Pr(Bck |mi,bm
k−1,xk)u Pr(Bck |bm

k−1,xk) = m̂ck

Note that we still preserve a strong dependence between voxels via the reaching
probability. To see this clearly, we expand the numerator p(ck|mi,bm

k−1,xk) in (19)
as (we drop x to unclutter the equations):

p(ck|mi,bm
k−1) = Pr(Bck ,Rck |mi,bm

k−1) = Pr(Bck |mi,bm
k−1)Pr(Rck |Bck ,mi,bm

k−1)

=


m̂ck ∏

cl
k−1

l=1 (1− m̂g(l,x)) if cl
k < il

mi
∏

cl
k−1

l=1 (1− m̂g(l,x)) if cl
k = il

m̂ck

(
∏

il−1
l=1 (1− m̂g(l,x))

)
(1−mi)

(
∏

cl
k−1

l=il+1(1− m̂g(l,x))

)
if cl

k > il
(20)

The denominator is p(ck|bm
k−1,xk)= m̂ck ∏

cl
k−1

l=1 (1−m̂g(l,x)) for all ck ∈C(x). In these
equations, cl

k = g−1(ck,xk) and il = g−1(i,xk) are the corresponding indices of ck and
i in the local frame. Therefore, the ratio in (19) is simplified to:

p(ck|mi,bm
k−1,xk)

p(ck|bm
k−1,xk)

= I(cl
k < il)+mi(m̂i)−1I(cl

k = il)+(1−mi)(1− m̂i)−1I(cl
k > il)

where I(A) is one if event A is true, and is zero otherwise. Plugging the ratio back
into the (19), and collecting linear and constant terms, we can show that:

p(mi|z0:k,x0:k) = (α imi +β
i)p(mi|z0:k−1,x0:k−1) (21)

where

α
i = (m̂i)−1 p(ck|bm

k−1,zk,xk)− (1− m̂i)−1
|C(x)|

∑
cl

k=il+1

p(ck|bm
k−1,zk,xk) (22)

β
i =

il−1

∑
cl

k=1

p(ck|bm
k−1,zk,xk)+(1− m̂i)−1

|C(x)|

∑
cl

k=il+1

p(ck|bm
k−1,zk,xk) (23)

In a more compact form, we can rewrite Eq. (21) as:
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bmi

k+1 = τ
i(bm

k ,zk+1,xk+1). (24)

Sensor cause model: The proposed machinery gives rise to the term
p(ck|z0:k,x0:k) = p(ck|bm

k−1,zk,xk), which is referred to as “Sensor Cause Model
(SCM)” in this paper. As opposed to the inverse sensor model in traditional mapping
that needs to be hand-engineered, the SCM can be derived from the forward sensor
model in a principled way as follows. η ′ is the normalization constant.

p(ck|z0:k,x0:k) = p(ck|bm
k−1,zk,xk) =

p(zk|ck,xk)p(ck|bm
k−1,xk)

p(zk|bm
k−1,xk)

(25)

= η
′p(zk|ck,xk)p(ck|bm

k−1,xk) = η
′p(zk|ck,xk)m̂

ck
k−1

cl
k−1

∏
j=1

(1− m̂g( j,x)
k−1 ),∀ck ∈ C(xk)

The complete mapping algorithm is recapped in Alg. 1. Using a KD-tree for
storing the map, the complexity of the proposed algorithm is O(|Vray| · log(|V|) ·
|Vray|) = O(|Vray|2 · log(|V|)), where V and Vray is the set of voxels in the map and
the set of voxels on the ray. The complexity of the standard log-odds approach with
KD-trees is O(|Vray| · log(|V|)). For details on these results, see [1].

Algorithm 1: Confidence-rich grid mapping
input : Current map belief bk, observation zk, measurement ray xk
output : Updated map belief bk+1
Procedure : bk+1 =Update(bk,zk,xk)

1 Find Vray voxels on the ray xk;
2 Compute SCM using Eq. (25);
3 foreach vi ∈ Vray do
4 Compute α i, β i (Eqs. (22), (23));
5 Update voxel belief (Eq. (21));

6 return bk+1;

7 Confidence in Map and Safe Exploration for Planning
The proposed method not only provides a more accurate map estimate, but more
importantly, the uncertainty associated with the returned value. In doing so, it in-
corporates the full forward sensor model into the mapping process. As an example,
it can distinguish between two voxels, when they are both reported as almost free
(e.g. m̂1 = m̂2 = 0.1), but they have different confidence levels (e.g. σm1

= 0.01 and
σm2

= 0.2). This confidence level is a crucial piece of information for the planner.
Obviously, the planner should either try to avoid m2 since the robot is not sure if
m2 is actually risk free (due to high variance), or it needs to take active perceptual
actions to take more measurements from m2 before passing through that part of the
map.

In the log-odds-based method only one number is stored in the map, namely the
parameter of the Bernoulli distribution. One might try to utilize the variance of the
Bernoulli distribution to infer the confidence in an log-odds-based map, but due
to the incorrect assumptions made in the mapping process and since the Bernoulli
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distribution is a single parameter distribution (mean and variance are dependent),
the computed variance is not a reliable confidence source.

It is important to note that generally a planner is able to cope with large errors if
there is a high variance associated with them. However, if the error is high and the
filter is confident about its wrong estimate, planning becomes very risky, and prone
to failures.

Consider a simple planning scenario in an unknown environment, where a
quadrotor has to traverse the environment as fast as possible while ensuring a rea-
sonable level of safety. Using our confidence-rich mapping (CRM) approach, one
can predict the future variance of the occupancy of the path. Since our method yields
consistent variance estimates, it enables uncertainty-aware planner to reliably infer
about the information gain of future perceptual measurements. Having this informa-
tion opens new possibilities for uncertainty-aware planners such as incorporating
safety-critical exploratory behavior into the fast navigation task. We plan to thor-
oughly investigate the planning component of the problem in future work.

8 Results
In this section, we demonstrate the performance of the proposed method and com-
pare it with commonly used mapping methods. Fig. 3 shows a 2D ground truth map
which serves as a simulation environment for the following scenario. Each voxel is
assumed to be a cube with s = 0.06m side length. The environment size is 2×2m,
consisting of 1089 voxels. Each voxel is either fully occupied (shown in black) or
empty (white). The robot follows a trajectory (red arrows), as shown in Fig. 3, and
takes one measurement at every arrow position.

simulation2d/groundtruth.png

Fig. 3 Ground truth map with
sampling trajectory where red ar-
rows represent measurement po-
sitions.

sensor std dev 0.25s 0.5s s 2s 3s

log-odds MAE 0.346 0.348 0.351 0.358 0.376
GPOM MAE 0.421 0.468 0.468 0.468 0.468
CRM MAE 0.289 0.299 0.323 0.355 0.365
log-odds Ic 17.340 18.609 17.665 18.862 19.243
GPOM Ic 10.167 10.172 12.964 10.212 10.490
CRM Ic 0.056 2.040 6.100 5.418 4.575

Table 1 Mean Absolute Error (MAE) and incon-
sistency Ic with γ = 1 (Eq. 27) of log-odds map-
ping, GPOM and the proposed method under dif-
ferent sensor model noise std. deviations (right)
where s is the voxel size (0.06m).

For the sensing system, we simulate a ranging sensor with 60 omnidirectional
depth sensors spanning over a field-of-view of 360◦ and reaching up to a range
of 1m. Measurements are perturbed by zero-mean Gaussian noise with 0.06m std.
deviation, i.e. one voxel length.

For the log-odds mapping, we use a typical inverse sensor model (Fig. 1) with
parameters rramp = 0.1, rtop = 0.1, ql = 0.45, and qh = 0.55. The Gaussian Pro-
cesses occupancy mapping (GPOM) uses a combination of a Matérn kernel with a
Gaussian noise:
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simulation2d/crm_mean.pngsimulation2d/logodds_mean.pngsimulation2d/gp_mean.png

simulation2d/crm_std.pngsimulation2d/logodds_std.pngsimulation2d/gp_std.png

simulation2d/crm_inconsistency.pngsimulation2d/logodds_inconsistency.pngsimulation2d/gp_inconsistency.png

Fig. 4 Mapping results: CRM (left column), Log Odds (center column), GPOM (right column).
Mean occupancies (top row), estimated standard deviation (middle row), inconsistencies |ec|> σc
for absolute voxel error |ec| and std σc (lower row). The mean occupancy GP map (top right) shows
the GP sample set where blue dots represent samples of free space and red dots represent occupied
space. Measurement rays are discretized on the voxel grid for GPOM, and appear with a random
offset only for visualization purposes.

k(x,x′) =
21−v

Γ (v)

(√
2v|x− x′|

l

)v

Kv

(√
2v|x− x′|

l

)
+σ

2
δx,x′ (26)

where Kv is the modified Bessel function of order v and δx,x′ is the Kronecker delta.
This kernel has three parameters, v, l and σ , which have been determined empirically
(Fig. 7(b)) to achieve comparable results to log-odds mapping and our method.

The occupancy maps resulting from the log-odds mapping, GPOM and the pro-
posed method are shown in the upper row of Fig. 4, respectively.

First, we study the sensitivity of our method to different sensor noises. The top
rows of Table 1 show the map mean absolute error (MAE) over time for different
sensor noise std deviations. The MAE is averaged over all the voxels that were up-
dated throughout the mapping process to best show the improvement of the affected
parts of the map. For the same noise intensity, the proposed CRM method shows a
smaller error compared to the log-odds and Gaussian Processes method.

It is worth emphasizing that reducing the map error is only an ancillary benefit
of our method. The main objective of CRM is to provide a consistent confidence
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simulation2d/inconsistencies.pdf

Fig. 5 Mapping error (red) and algorithmically computed std deviation (blue shades for 2σ (light)
and σ (dark) confidence bounds) over a set of voxels, with highlighted severe inconsistencies:
errors outside 2σ -interval (black squares) and outside 1σ -interval (orange diamonds).
measure. This consistency is particularly important for planning purposes. A planner
might be able to handle large errors as long as the filter indicates that the estimates
are unreliable (e.g. via their variance). However, if the filter returns a wrong estimate
with low variance (i.e. it is confident that its estimate is correct, while it is not), then
the planner is prone to yield unsafe results.

To quantify the inconsistency between the error and reported variances, we utilize
the following measure:

Ic = ∑
c

ramp(|ec|− γσc) (27)

where, ec and σc denote the estimation error and the std. deviation of voxel
c, respectively. γ decides what level of error is acceptable. The ramp function
ramp(x) := max(0,x) ensures that only inconsistent voxels (with respect to γσc)
contribute to the summation. Accordingly, Ic indicates how much of the error sig-
nal is out of bound (i.e., how unreliable the estimate is) over the whole map. As
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simulation2d/ramp_inconsistency.pdfsimulation2d/correlation.pdf

Fig. 6 Evaluation of inconsistency (Eq. 27) over threshold values γ (left). Pearson correlation
coefficient between the reported std deviation and the absolute error over all voxels at a given step
(right).
can be seen in the middle row of Fig. 4, where voxels of high inconsistency appear
brighter, the log-odds based approach tends to be overly confident in false estimates,
compared to the other methods. GP-based maps appear less clear compared to tra-
ditional occupancy grids with the advantage of a higher consistency. However, as
can be seen in the bottom right map of Fig. 4, smaller obstacles are not mapped
accurately and pose dangerous areas of inconsistency.

The last two rows of Table 1 show the described inconsistency measure for dif-
ferent sensor noise levels. The proposed CRM method is able to significantly out-
perform the log-odds and the Gaussian Processes methods for all of the tested noise
std. deviations.

Fig. 5 shows the error value corresponding to the groundtruth map in Fig. 3 along
with the estimated σ -bound over 1/7 of all voxels. As can be seen from the top row,
the σ -bound from CRM grows and shrinks in a consistent manner with the error,
and behaves as a reliable confidence interval that can be used in planning. However,
the log-odds mapping (middle row), there exist many voxels (highlighted by square
and diamond markers) where the error is high (close to -1 or 1, i.e., a free voxel is
estimated as fully occupied or vice versa) at which the variance is very low, which
pose a significant challenge to the planner. Similarly to our method, GPOM rarely
exhibits inconsistencies. However, the σ -bound is not as pronounced (bottom row),
compared to CRM, making it difficult to assess the confidence of the estimates since
most of them appear highly uncertain (σ close to 0.5).

Fig. 8 (left) compares the inconsistency measure (Eq. 27) over different γ thresh-
olds for the presented mapping algorithms. The log-odds approach overestimates
the confidence significantly more while GPOM and our method yield much safer
estimates.

While GPOM and the proposed approach yield similar results in the ramp in-
consistency comparison, it should be noted that GPOM is computationally much
more expensive than occupancy grids [15]. Gaussian Processes rely on the full set
of measurement samples in order to predict the map occupancy. Over the course of
the trajectory, it takes more than two minutes to update the Gaussian Processes with
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1380 depth measurements and to query the GP at all every voxel. In comparison, on
the same hardware, our method finishes both tasks in less than five seconds.

As an alternative measure of consistency, we compute the Pearson correlation co-
efficient between the true mapping error and the reported std. deviation (see Fig. 8 on
the right), which indicates that the std. deviation computed by the proposed method
is highly correlated with the error, and hence can reliably describe the error’s be-
havior.

Since the inverse sensor model (ISM) is typically hand-engineered for a given
sensor and a given environment, we sweep over a set of ISM parameters to compare
the performance with the proposed method. Following the generic form of ISM in
Fig. 1, we create 27 ISM’s by (i) setting the qh−0.5= 0.5−ql to (0.05,0.2,0.4), (ii)
setting rramp to (0.05,0.1,0.3), and (iii) setting rtop to (0.05,0.1,0.3). Accordingly,
we draw the Gaussian Process (GP) parameters v, l and σ from the sets {2,2.5,3},
{2.5,3.5,4.5} and {0.5,1,1.5}, respectively, yielding 27 different GPOM config-
urations. The results reported in Fig. 7 show that CRM consistently produces a
smaller absolute error than log-odds and GPOM over a variety of ISM and GP pa-
rameters, as well as a smaller portion of error that is inconsistent according to the Ic
measure.

9 Conclusion
This paper proposes an alternative algorithm for occupancy grid mapping, by storing
richer data for every voxel. It extends traditional grid mapping in three ways: first,
it relaxes the full-independence assumption and incorporates dependence between
voxels in the measurement cone into the mapping scheme. Second, it relaxes the
need for hand-engineering an inverse sensor model and proposes the sensor cause
model that can be derived in a principled manner from the forward sensor model.
Third, and most importantly, it provides consistent confidence values over occu-
pancy estimation that can be reliably used in planning. The method runs online
as measurements are received and it enables mapping environments where voxels
might be partially occupied. The results show that the mapping accuracy is ap-
proximately 10% better than the ISM-based method and 30% better than Gaussian
Processes maps, and more importantly, according to the proposed consistency mea-
sure, the confidence values are up to two orders of magnitude more reliable.
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