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Abstract— Planning safe, high-speed trajectories in unknown
environments remains a major roadblock on the way to-
ward achieving fast autonomous flight. Current state-of-the-
art planning approaches use sampling-based methods or tra-
jectory optimization to obtain fast trajectories, whose safety
is evaluated by taking into account the current state estimate
of the environment. In unknown environments, however, this
leads to numerous stops caused by the need for re-planning
the trajectory due to unexpected obstacles. In this paper, we
propose to use an active perception paradigm for planning.
We predict the future uncertainty of the map and optimize
trajectories to minimize re-planning risk. This leads to faster
and safer trajectories. We evaluate the proposed planning
approach in a series of simulation experiments, which show
that we are able to achieve safer trajectories with a smaller
number of re-planning stops and faster speeds.

I. INTRODUCTION

Despite substantial progress in the area of UAVs, high-
speed flight in unknown, unstructured environments still
remains one of the biggest challenges towards full flight
autonomy. In recent years, researchers have achieved im-
pressive results on different aspects of this problem such as
fast localization [1], novel sensors [2], aggressive low-level
controllers [3] and self-calibration [?]. More recently, many
groups have started looking into using active perception
methods. These have led to results that were not possible
with traditional techniques that consider the different aspects
of the fast-flight problem in isolation [4], [5].

In this work, we develop the idea of using active percep-
tion to enable fast flight. In particular, we address the prob-
lem of planning high-speed motions in confidence-rich maps
while considering the future map uncertainty. A confidence-
rich map [6] is a planning-oriented representation of the
environment and an extension to the traditional occupancy
grip map. It provides a fully probabilistic map representation
that has access to an accurate estimate of the variance of
the voxel occupancy estimate, which is necessary for active
perception techniques.

While the community has given a lot attention to different
aspects of planning under uncertainty (e.g., planning under
location uncertainty [7] or under target uncertainty [8]), there
has been relatively less emphasis on the uncertainty of the
map, which has arguably the biggest influence on high-
speed flight. As an example, consider a quadrotor flying in
an unknown, obstacle rich environment, trying to reach a
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Fig. 1. An example of a micro aerial vehicle capable of fast and dynamic
flight up to 20mph. The vehicle is equipped with stereo cameras with a
baseline of 80mm which are used as the main depth sensor.

designated goal as fast as possible. Every time the system is
“surprised” by an element of the map that it did not consider
before, it must to re-plan its motion entirely using the newly
acquired information. This typically causes the system to
slow down. The number of such “surprises” increases when
using low-cost light sensors (e.g. stereo cameras with small
baselines that are commonly used on agile micro UAVs,
Fig. 1). In this work, we aim to limit the number of surprises,
enabling faster flight with better predictability and higher
safety.

The key contributions of our approach are:
• A thorough analysis of a probabilistic safety measure

for a trajectory (including the proposed improvements).
• Incorporating the confidence-rich map representation

into a planning framework that includes future map
predictions.

• A novel cost function that utilizes the estimate of the
covariance of the map and enables faster and safer plans.

We evaluate the proposed planning approach in a series of
simulation experiments which serve as a proof of concept to
demonstrate the performance of the method.

II. RELATED WORK

Planning under uncertainty has enjoyed much success
in recent years. Examples include planning under location
uncertainty for multi-robot systems [8], planning under en-
vironment uncertainty for humanoids and medical robots [9],
[10], and planning under motion and sensing uncertainty
[7], [11]. There has been a relatively smaller body of work
on planning in uncertain maps e.g., in [12] the map uncer-
tainty is considered by extending the probabilistic roadmaps



framework [13] to cope with uncertain maps using different
sampling strategies.

Planning in uncertain maps requires a probabilistic repre-
sentation of the map in a format suitable for the robot. Even
though there have been multiple approaches to fast mapping
for robotic vehicles [14], [15], there has been less work that
includes the uncertainty of the map. Examples include [16]
wherein a mapping approach is presented based on Gaussian
Processes that includes the uncertainty and relaxes the voxel-
independence assumption. Later on, the same group proposed
an extension [17] that yields significantly better computation
complexity while maintaining the probabilistic advantages
previously developed. In this work, we adopt the method
recently proposed by [6] that is able to represent the full
probability distribution over occupancy levels while keeping
the computationally-efficient voxel map representation.

Since we aim for not only incorporating the uncertainty
of the map into the trajectory optimization framework but
also high speed of the resulting trajectory, we present the
related work in planning dynamic trajectories. Planning high-
speed motions is an area that emerged recently with advances
in mechanical design and robust low-level controllers for
flying vehicles. In [18] a trajectory optimization framework
is described that enables fast generation of minimum snap
trajectories based on the time polynomial representation of
the trajectory. A similar representation was used in [11], [?],
[19] to generate safe trajectories that consider the uncertainty
of the system. A different approach to planning high-speed
motions in the presence of uncertainty was presented by [4],
where the authors present an active sensing method to fly
through narrow gaps. We believe that the idea of perception-
oriented control presented in this work shows great potential
for fast-flight planning and we use this paradigm in this
paper.

There exist other approaches to the problem of planning
under uncertainty that focus on learning. For example, in [20]
a guidance function is trained to give the robot greater
visibility in the unknown parts of the environment. Other
learning methods use high-dimensional function approxima-
tors (such as neural networks) to cope with the difficulty of
planning safe motions straight from the sensory output [21].
Although these approaches show great potential, they come
with significant drawbacks such as requiring access to a
lot of training data, limitation to the training dataset, and
non-probabilistic interpretation of the results. In contrast,
in this work, we show an approach that does not rely on
training data, and instead uses trajectory optimization to plan
for high-speed safe motions while considering the future
uncertainty of the map.

III. BACKGROUND AND PROBLEM FORMULATION

A. Confidence-rich maps

A confidence-rich map [6] is a planning-oriented rep-
resentation of the environment. It provides an alternative
map representation for occupancy grid mapping by storing
richer data in each cell. This extension leads to a number of
advantages over traditional occupancy grids: (i) it relaxes the

full-independence assumption and incorporates the coupling
between voxels within the measurement cone into the map-
ping scheme, (ii) it relaxes the need for hand-engineering an
inverse sensor model and proposes the sensor cause model
that can be derived from the forward sensor model, and most
importantly, (iii) it provides consistent confidence values over
occupancy estimates that can be reliably used in planning.

Next, we briefly discuss the theory behind confidence-rich
maps. Let G = [G1, · · · , Gn] be an n-voxel grid overlaid
on the 3D (or 2D) environment. An occupancy map m =
[m1, · · · ,mn] is defined as a set of values over this grid. We
adopt a more general definition of occupancy where mi ∈
[0, 1] denotes what fraction of the corresponding voxel is
occupied. mi = 1 when the i-th voxel is fully occupied and
mi = 0 when it is free.

The full mapping problem is defined as estimating the
map m based on obtained measurements and robot poses.
We denote the sensor measurement at the k-th time step by
zk and the sensor configuration at the k-th time step with
xvk. Formulating the problem in a Bayesian framework, we
compress the information obtained from past measurements
z0:k = {z0, · · · , zk} and xv0:k = {xv0, · · · , xvk} to create
a probability distribution (belief) of the map m, i.e., b̄mk =
p(m|z0:k, xv0:k). Due to challenges in storing and updat-
ing such a high-dimensional belief, grid mapping methods
typically start from individual cells (marginal distributions).
In other words, the map probability density function (pdf)
is represented by the collection of individual voxel pdfs
(marginal pdfs), instead of the full joint pdf.

bmk ≡ (bm
i

k )ni=1, bm
i

k = p(mi|z0:k, xv0:k). (1)

In [6] a method was proposed to recursively compute these
marginals while taking the correlation with nearby cells into
account. Here, we abstract this mapping mechanism to:

bm
i

k+1 = τm
i

(bmk , zk+1, xvk+1) (2)

where τ (mapper) updates the current belief of the i-th voxel
based on the last measurement and all surrounding voxels.
The mapping system is designed for planning purposes, as it
captures the full pdf of the map which includes the variance
(i.e., the confidence) of information in the map. We exploit
confidence as a metric in planning as it is crucial for the
quantification of safety and reliability.

B. Trajectory Representation and Optimization

Similar to [11] and [?], we represent a trajectory by a
k-dimensional, d-degree, q-piece piece-wise polynomial:

x(t) =


P1t(t) if t0 ≤ t < t1
...
Pqt(t) if tq−1 ≤ t ≤ tq,

where Pi is the k×(d+1) matrix of polynomial coefficients
for the i-th polynomial piece, and t is the time vector, i.e.:

t(t) =
[
t0 t1 . . . td

]T
.



Using this representation, we can represent simple con-
straints on positions and their derivatives at certain times
with a system of linear equations, For example:[

x(0) ẋ(0) ẍ(0)
]

= P1

[
t(0) ṫ(0) ẗ(0)

]
(3)

expresses initial position, velocity, and acceleration con-
straints on a trajectory. The vector ṫ is the trivial derivative
such that ẋ(t) = Piṫ(t).

Since we employ multiple polynomial pieces to extend
the expressiveness of the trajectory representation, we must
ensure the continuity of the trajectory at the knots. In
particular, we enforce the trajectory to be continuous up to
the β-th derivative:

Ti =
[
t(ti) ṫ(ti) . . .

(β)

t (ti)

]
. (4)

We thus formulate smoothness constraints as a linear system
which, in combination with equations in the form of Eq. 3,
completely expresses the trajectory constraints:

[
P1 . . . Pq

]


T0 T1

−T1 T2

...
. . . . . . ...

−Tq−2 Tq−1

−Tq−1 Tq


=
[
x(0) ẋ(0) . . . 0 . . . ẍ(T )

]
, (5)

or in short:

P̄T = c. (6)

Since the system can be undetermined with a high enough
degree of the polynomials, we can use the left nullspace of
the constraint matrix as the optimization space. This con-
verts an optimization problem over the space of waypoint-
and continuity-satisfying piecewise polynomials from a con-
strained problem into a smaller, unconstrained problem over
the null space weights. In particular:

P̄∗ = cT+ + rNull(TT )T , (7)

where T+ is the pseudo inverse of the time matrix T, r
is a row vector of the null space weights, which are the
optimization variables. Additional constraints related to the
system’s physical limits are incorporated into the optimiza-
tion problem as nonlinear inequalities.

IV. REACHABILITY

A. Traditional Measure of Reachability

The reachability R of a trajectory x can be computed as
follows:

R = Pr(S1, S2, · · · , Sn) (8)

where, Si denotes the event of surviving voxel i, and we as-
sume the robot trajectory intersects with voxels 1, 2, · · · , n in
the map. Using Bayes rule we can compute the reachability:

R = Pr(S1) Pr(S2|S1) · · ·Pr(Sn|Sn−1, · · · , S1) (9)

To survive the whole path, the robot needs to survive every
one of these voxels, which leads to:

R =

n∏
i=1

(
1−mi

)
, (10)

where mi is the density of the i-th voxel. This is the
traditional measure used in reachability calculations [12].

B. Reachability as a Product Integral

Reachability, as defined in Eq. 10, describes the binary
case in which a robot can either be at voxel i or not. Hence,
the trajectory is only considered based on the voxels it
traverses without taking into account how much of a voxel
has been traversed. Interpreting the voxel occupancy as a
density provides a physically more accurate representation of
the environment: if we subdivide a three-dimensional voxel
with occupancy 0.5 into 8 smaller voxels, they have, without
taking further information into account, the same density.
Traversing the original (larger) voxel should therefore yield
the same reachability, as if the smaller voxels were traversed
in the same way. In the binary case, however, surviving
the larger voxel would have a higher probability (0.5) than
traversing its subdivided voxels (e.g. 0.25 if traversing along
one dimension) as the voxel reachabilities are multiplied. In
the following, we propose a new interpretation of reachability
that accounts for the fraction of time that a robot has stayed
in a voxel while following a trajectory.

We assume time to be continuous such that Eq. 10 can
be represented by the product integral

∏T
0 (1−m(x(t)))

dt.
By choosing n intermediate points at small time steps ti
(i = 0..n; 0 ≤ ti ≤ T ) with constant time interval ∆t, this
product integral is defined as:

Rt(x) = lim
∆t→0

n∏
i=0

(1−m(x(ti)))
∆t (11)

Figure 2 exemplifies the computation of reachability using
Eq. 11. The lighter and darker voxels have occupancies m
of 0.25 and 0.75, respectively. According to Eq. 10, the
reachability of the red trajectory is equal to 0.14, while
Eq. 11 results in the reachability of 0.37 when taking 200
samples along the trajectory. In the latter case, the top right
voxel of high occupancy is discounted because of the small
number of samples that were taken in this cell. On the other
hand, Eq. 10 treats the traversal of the top right voxel the
same as if it was traversed through its diagonal, which leads
to an underestimated measure of reachability. The horizontal
trajectory (blue) traverses two voxels and samples over the
whole length of both voxels (side length 1). In this special
case, both reachability representations yield the same result.

While trajectories are generally defined with respect to
time, the evaluation of traversed voxels by the trajectory
requires a geometric representation that focuses on the
shape of the trajectory, i.e. the path. Instead of time t,
the continuous reachability representation must consider the
distance travelled through a voxel. The distance travelled



Fig. 2. Example of trajectories that traverse a 2 × 2 voxel grid (left),
which are sampled for reachability along 200 steps. Middle: the reachability
profile for the red trajectory as the map is sampled along the trajectory. The
green, dashed curve represents the interpolated reachability based on Eq. 15.
Right: the reachability profile for the blue trajectory and its corresponding
interpolated reachability curve (green, dashed).

along trajectory x(t) over the time interval [t1, t2] is defined
by the arc-length function:

L(t1, t2) =

∫ t2

t1

||ẋ(t)||dt, (12)

which leads to the expression of reachability integrated over
arc-length RL:

RL(x) = lim
∆t→0

n∏
i=0

(1−m(x(ti)))
L(ti,ti+∆t) (13)

As the time difference ∆t between two consecutive time
steps ti, ti + ∆t approaches zero, the arc-length between
these positions can be approximated by the Euclidean dis-
tance ||x(ti)− x(ti + ∆t)|| such that

RL(x) ≈ lim
∆t→0

n∏
i=0

(1−m(x(ti)))
||x(ti)−x(ti+∆t)|| (14)

For brevity, in the following, the notation R(x) is assumed
to express RL(x) from Eq. 14.

C. Map Interpolation
While the interpretation of reachability using a product in-

tegral alleviates the binary traversal of voxels assumption, it
is still not continuous. The discontinuity comes from the fact
that samples at time step ti and ti + ∆t are evaluated using
the grid quantization of x(ti) and x(ti+∆t), which leads to
discontinuities if both positions fall into different voxels. In
order to enable a smooth objective function of reachability,
we introduce an interpolation method that is inspired by bi-
linear filtering [22]. A continuous point is sampled based on
its relative position between two neighboring voxels in every
dimension. While classical bi-linear filtering uses a weighted
sum to interpolate between given data points, we compute
the weighted product to preserve the multiplicative property
of the reachability (Eq. 14). In the two-dimensional case, the
occupancy at point x(t) =

[
xt yt

]T
in a U ×V voxel grid

is sampled as follows:

r[x(t)] ≈
(
(1−mij)

1−α · (1−mi+1,j)
α
)1−β

(15)

·
(
(1−mi,j+1)1−α · (1−mi+1,j+1)α

)β
,

where:

i = bxtUc j = bytV c
α = frac(xtU) β = frac(ytV ).

In the special case where a trajectory traverses voxels
completely, e.g. the green horizontal trajectory in Fig. 2, the
proposed interpolation method yields the same reachability
as the multiplied individual voxel reachabilities. This method
provides a smoother representation of the map that can be
efficiently used in the optimization, while maintaining the
correct estimate of the reachability. As a result, we obtain a
better measure of reachability, but do not have the estimate
of the variance that can be used to actively plan high-speed
trajectories. We address this problem in the next section.

V. MAP PREDICTION USING CONFIDENCE-RICH MAPS

In order to estimate the variance of reachability of the
map, the planner needs to reason about the acquisition of
future perceptual knowledge and incorporate this knowledge
in planning. An important feature of the confidence-rich map
is that it enables efficient prediction of the map evolution and
map uncertainty.

The precise way of incorporating unknown future obser-
vations is to treat them as random variables and compute
their future probability density function. However, a common
practice in the belief space planning literature is to use the
most likely future observations as the representative of the
future observations to reason about the evolution of belief.
Let us denote the most likely observation at the n-th step
by:

zmln = arg max
z
p(z|bmn , xvn) (16)

Using the most likely observations, we can compute most
likely future map beliefs:

bm
i,ml

n+1 = τ i(bm,mln , zmln+1, xvn+1), n ≥ k (17)

where, bm
i,ml

k = bm
i

k .
These quantities can be used to compute the mean and

the variance of the future reachability and therefore, serve
as good measures of the final cost function that incorporates
the active component into high-speed trajectory planning. For
more details on map prediction, see [6].

VI. COST FUNCTION FOR HIGH-SPEED SAFE
TRAJECTORIES

Since confidence-rich mapping not only estimates voxel
occupancies but also their variances, we are able to integrate
the mapping uncertainty into our objective function. In the
following, we first show how to compute the mean and
the variance of reachability based on the voxel occupancy
estimates, and then, we propose to use Lower Confidence
Bound [23] as an effective approach to combine the mean
and variance of reachability to obtain a cost function that
can be used to generate safe, high-speed trajectories.

A. Expectation and Variance of Reachability

The expectation of reachability is defined based on the
product integral of voxel occupancy expectations (Eq. 14):

E[R(x)] = lim
∆t→0

n∏
i=0

(r [x(ti)])
||x(ti)−x(ti+∆t)||

, (18)



where m̂(x(ti)) is the expected occupancy of the voxel at
position x(ti). In the following, the voxel reachability esti-
mates X1, . . . , Xm are assumed to be independent random
variables, for which we compute E[Xi] = 1 − m̂i and
var[Xi] = v̂i. In this case, the variance of the reachability,
i.e. the product of X1, . . . , Xn is computed as:

var[X1 · · ·Xn] =

n∏
i=1

(
var[Xi] + (E[Xi])

2
)
−

n∏
i=1

(E[Xi])
2

=

n∏
i=1

(
v̂i + (1− m̂i)

2
)
−

n∏
i=1

(1− m̂i)
2
.

While this representation of variance is correct under the
binary voxel traversal assumption, it does not consider the
distance travelled within voxels. Reintroducing the notion of
a product integral over arc-length, var[R(x)] is computed as
follows:

var[R(x)] = lim
∆t→0

n∏
i=0

(
v̂(x(ti)) + (r[x(ti)])

2
)di (19)

−
n∏
i=0

(r[x(ti)])
2di ,

where di = ||x(ti)− x(ti + ∆t)||.

B. Lower Confidence Bound

Having computed the mean and the variance of reacha-
bility, we aim to find a measure that combines the two in
a principled manner to obtain a cost function for reliable
high-speed trajectories.

In order to do so, we follow the theory developed for
multi-armed bandit problems. In particular, we use the Lower
Confidence Bound (LCB) [23], which is used to drive an
efficient decision making strategy that balances exploitation
and exploration to maximize the reward. In Bayesian Opti-
mization, the objective function is modeled by a Gaussian
Process over which the acquisition component selects the
next point at which to evaluate the objective function [24].
This method performs well as it allows to directly tune
the trade-off between exploitation and exploration. In this
setting, our objective is to find the safest trajectory by
combining the reachability value and our confidence in it,
which can be formulated as the Lower Confidence Bound:

LCB(x) = E[R(x)]− κσ[R(x)]. (20)

When incorporating variance into our objective, we are
able to avoid the regions where the pure-reachability-based
method would be overconfident by ignoring the high variance
of the reachability estimate.

C. Algorithm Summary

Initially, the robot takes one measurement and updates
the map. Based on this initialization, an optimizer simulates
trajectories (Alg. 2) with different parameters r to maximize
the lower confidence bound. The simulation takes place by
taking most likely observations and updating an imaginary

map bm,ml, which is a local copy of the current-state belief
map bm.

The proposed method (for an overview of the algorithm
see Alg. 1) instructs the robot to follow the current trajectory
x parameterized by the previously obtained r, take measure-
ments and update the belief map. This process continues until
the time limit has been reached, or the reachability of the next
k trajectory positions x(t),x(t + ∆t), . . . ,x(t + k∆t) falls
below a predefined threshold 1− ε. In this case, re-planning
is triggered and a new best trajectory is computed.

Algorithm 1 Re-planning given constraints c

procedure PLAN(c, bm)
t← 0
Initialize trajectory parameter r← 0
Compute trajectory x using r (Eqn. 7)
Take measurement, update bm (Eq. 2)
Compute T (Eq. 4)
r← argmax

r
EVALUATE(c,T, r, bm)

Compute trajectory x using r (Eqn. 7)
while t < T do

Move to position x(t) and orient forward-facing
Take measurement, update bm (Eq. 2)
rt ← R (x(t : t+ k∆t))
if rt < 1− ε then . Replanning necessary

Compute T (Eq. 4)
r← argmax

r
EVALUATE(c,T, r, bm)

Compute trajectory x using r (Eq. 7)
end if
t← t+ ∆t

end while
end procedure

VII. SIMULATION EXPERIMENTS

We evaluate the proposed method in different environ-
ments. In the first scenario, two rectangular obstacles form a
tunnel which the robot has to traverse in order to reach the
goal. The robot is equipped with a depth camera which al-
ways points forward along the robot’s trajectory, and utilizes
16 horizontally arranged range sensors that span a field of
view of 90◦. The voxels have a side length of 0.1m and are
arranged in a 20× 20 grid. Measurements are perturbed by
zero-mean Gaussian noise with std dev σ = 0.2m.

As a baseline for comparison, we set κ from Eq. 20 to 0,
causing the optimization based on lower confidence bound
(LCB) to become a pure reachability-based maximization.
This method is compared to our LCB-based optimization us-
ing different values for κ on various metrics. The first metric
considers the reachability of the points along the trajectory
after Alg. 1 has finished, which directly corresponds to the
path’s safety. In addition, we compare the two methods by
the measure of surprise:

∆E[R(x(t))] =
∣∣∣E[R(x(t))]− E[R(x(t−∆t))]

∣∣∣ (21)



Algorithm 2 Simulating trajectory to compute LCB
function EVALUATE(c,T, r, bm)

. Simulate and compute LCB of trajectory x
parameterized by r

Compute trajectory x using r (Eq. 7)
t← ∆t . Move one step ahead
bm,ml ← bm . Copy current state of belief map
while t < T do

Move to position x(t) and orient forward-facing
Obtain zml using Eq. 16 from bm,ml

Update map bm,ml according to Eq. 17
d← ||x(ti)− x(ti + ∆t)||
R ← R · (r[x(t)])

d

Vl ← Vl ·
(
v(x(t)) + (r[x(t)])

2
)d

Vr ← Vr · (r[x(t)])
2d

t← t+ ∆t
end while
V ← Vl − Vr
LCB ← R− κ

√
V

return LCB
end function

which is computed at every time step by taking the absolute
difference between the expected reachability of the remaining
trajectory at the current and the previous time step.

As it can be seen in Fig. 3, the trajectory that is solely
optimized for reachability makes a sharp turn before entering
the tunnel, which not only slows down the robot but also
increases the “surprise factor” since most of the remaining
path is hidden behind the corner. Optimizing for the lower
confidence bound resolves both issues: the robot makes a
wider turn to reduce estimation uncertainty which allows
faster trajectory execution and a significant reduction in
surprise. Not only does our method outperform the reach-
ability baseline based on surprise, but the overall expected
reachability of the remaining trajectory is better most of
the time as well. The same holds true for the expected
reachability E[R(x(t : t+ 10∆t))] (rightmost plot in Fig. 3)
over the next 10 steps, which corresponds to the path’s safety
for the immediate future.

Besides generating safer trajectories, the LCB-measure as
basis for trajectory optimization also exhibits less stops for
re-planning as well as faster traversal times. As shown in
Fig. 4, compared to pure reachability-based planning, i.e.
LCB with κ = 0, the proposed method utilizing a Lower
Confidence Bound with κ > 0 led to a reduction in re-
planning stops of up to 70% and a speed-up in traversal
time by up to 34%.

In another scenario, depicted in Fig. 5, the proposed
method yields a trajectory that again preemptively circum-
vents obstacles to keep surprise to a minimum, which
additionally results in a better overall reachability, i.e. a
safer path. As experiments have shown, the traversal time
is shorter in the LCB-optimized trajectory (1.512s in the
scenario of Fig. 5) compared to the baseline (1.653s). The
reason for this improvement lays in the smoother trajectory

curvature that is generated by the proposed method: when
pure reachability-based re-planning is triggered, the robot is
on a trajectory that requires much stronger alteration, and
therefore deceleration, over the coming time steps to steer
away from obstacles. In contrast, the proposed LCB-measure
yields much more conservative trajectories that make wide
turns around unsafe areas giving the robot more space to
steer away from upcoming obstacles without significantly
decreasing velocity.

VIII. DISCUSSION AND FUTURE WORK

We presented a method that enables planning of high-
speed motions using confidence-rich maps and the explicit
consideration of future map uncertainty. Specifically, we
predict the future uncertainty of the confidence-rich map and
optimize trajectories to minimize re-planning. The simulation
experiments indicate that the presented trajectory optimiza-
tion method leads to faster and safer trajectories with a
smaller number of re-planning stops than the traditional
reachability-based optimization.

There are a number of interesting extensions of the pro-
posed method that we plan to investigate in the future. We
are working on extending the proof-of-concept simulations
to a 3D environment that will be later used to perform tests
on real robots. Further, we plan to incorporate the yaw of the
vehicle into the trajectory optimization so that we can achieve
behaviors where the robot looks ahead at the part of the
map that will be relevant for the future part of the trajectory.
We believe that this will further reduce the variance of our
estimates and potentially allow even faster flight.
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