
Designing a Diagnostic Engine
for Smart Environments

Eric Heiden1, Sebastian Bader2, and Thomas Kirste2

1 University of Southern California
Los Angeles, USA
heiden@usc.edu

2 Institute of Computer Science
Universität Rostock
Rostock, Germany

{sebastian.bader, thomas.kirste}@uni-rostock.de

Abstract. Automatically diagnosing a complex system containing het-
erogeneous hard- and software components is a challenging task. To ana-
lyze the problem, we first describe different scenarios a diagnostic engine
might be confronted with. Based on those scenarios, a concept and an
implementation of a semi-automatic diagnostic system are presented and
some first benchmarks are shown.

Keywords: Automatic Diagnosis, Diagnostic Engine, Non-monotonic
Reasoning, Model-based Diagnosis

1 INTRODUCTION

Imagine you enter a smart conference room, connect your laptop with the first
available HDMI-port and the system automatically switches on the main pro-
jector. Smart Environments like this allow the user to seamlessly interact with
an ensemble of interconnected devices. Sensors and actuators are combined to
provide an unobtrusive environment in which the user’s intentions are inferred
to facilitate multimedia-enabled conferences or lectures. Immediately the first
slide of your presentation appears on the screen and you can start your talk.
But suddenly the projected display turns blank and you have to interrupt the
presentation. What could possibly have happened? The green power indicating
LED of the projector is still glowing and your laptop indicates it is duplicating
its screen via the HDMI connection, too. Perhaps the display signal connection
is broken? But after having manually checked the firmness of every cable on the
way from your notebook to the projector the symptom still persists. Finally you
see no other option than asking the facility manager to look after the problem.
A short while later she finds the source of the error: the projector’s lamp has
exceeded its lifespan. Her expert knowledge helped her diagnose the problem.

This contrived scenario gives rise to several questions: How could this situa-
tion be handled better? What if we had expert knowledge immediately available

2 Eric Heiden, Sebastian Bader, and Thomas Kirste

without always having to seek out technicians to identify and troubleshoot mal-
functions? Which automatic methods do exist for the diagnosis of error sources?

In this paper, we present an approach for a diagnostic engine and its real-
ization in our smart meeting room. Figure 1 shows the context of a diagnostic
engine. The engine has predefined knowledge of the environment, i.e. the system
of interconnected components to be diagnosed. Provided with a symptomatic
observation, the engine reasons about possible sources of the encountered mal-
function. To improve these explanations, further observations can be gathered
using the middleware to retrieve status information from the system’s compo-
nents. As not every detail is observable through the middleware, the engine can
also ask the user to provide observations.

User

Knowledge

Diagnostic Engine

Middleware

System
description

Diagnosis

Observations

Observations

Fig. 1. Context of the Diagnostic Engine

First, we present a number of scenarios with increasing difficulty in Section 2.
We review different approaches for diagnostic systems in Section 3. In Section 4,
we present our concept for a diagnostic engine and describe our implementa-
tion in Section 5. Finally, we present some preliminary benchmark-results in
Section 6.

2 DIAGNOSTIC SCENARIOS

In the following, several exemplary scenarios are described to demonstrate differ-
ent aspects of failure diagnosis. Scenarios are grouped by their difficulty from a
diagnostic engine’s perspective ranging from problems which can be detected by
a single automatic step, up to unsolvable issues which cannot be diagnosed, not

Designing a Diagnostic Engine for Smart Environments 3

even in cooperation with the user. The analysis of problem classes furthermore
allows to narrow down the diagnosis problem to only some subsystems which
can be effectively treated by semi-automatic diagnosis.

Scenarios are described by first indicating what the diagnostic engine knows
about the system. This a-priori knowledge consists of a wiring diagram repre-
senting the system description, and the user’s observations on the state of the
involved components. If we are confronted with a diagnosis problem, these obser-
vations should contain symptomatic descriptions which differ from the normal
system behavior.

The omniscient perspective explains holistically the actual system configu-
ration and true causes for the occurring issues. If the diagnostic engine were
to know these facts, the proper diagnosis would be calculable instantaneously.
Subsequently, the partial view of the system from the diagnostic engine’s per-
spective is examined to derive all possible diagnoses the system can infer based
on the observations and its understanding of the system. If the diagnosis is too
vague to be useful for troubleshooting, the engine makes further observations or
asks the user to perform these in order to gain more detailed information on the
true causes of symptoms.

These scenarios are contrived and are meant to facilitate a more lucid view
on the general idea of diagnostic reasoning and probable pitfalls of automatic
diagnosing.

2.1 Automatically Identifiable Problems

This category contains scenarios which the diagnostic engine can identify com-
pletely autonomously without cooperating with the user, i.e. solely based on
information accessible through the middleware.

Complete Observations The user tries to display content from laptop L on
projector P but the screen remains blank. The user has already observed that P
is switched off and that all involved devices and connections work as expected
without any problems.

Omniscient Perspective:
– All components work correctly.
– All involved cables are in proper condition.
– The projector is switched off.

Possible Error Sources:
– The projector is switched off.

This scenario represents the special case where the provided observations are
detailed enough to account for a precise diagnosis. No further knowledge is re-
quired to infer that the powered off projector is the single error source because
it is given that all components function.

Automatic Observations The user tries to display content from laptop L on
projector P but the screen remains blank. L and the control server S work as

4 Eric Heiden, Sebastian Bader, and Thomas Kirste

expected, and L provides an HDMI video signal. All connections are stable. All
devices are switched on.

Omniscient Perspective:
– All components work correctly.
– All involved cables are in proper condition.
– S configured P to use the wrong input port.

Possible Error Sources:
– P is defect (e.g. projector lamp burned out, firmware error, overheating, serious

physical damage).
– S configured the wrong input on P .
– P ignores the configuration carried out by S and hence uses the wrong input.

The diagnostic engine is now confronted with an ambiguous situation where mul-
tiple diagnosis candidates compete. Here, a tie-breaking observation is necessary.
Let us assume that the engine asks S which input configuration has been set on
P . S now requests status information from P and reports P ’s input configura-
tion. This automatic observation reveals that P is using the VGA port instead
of HDMI to which L is connected to. From this knowledge it can be inferred
that P is not defect (for simplicity we assume that if P can be accessed via
Ethernet it is completely ok) and only S made the wrong input configuration.
Without the need of human cooperation the engine could diagnose the symptom
completely automatically. And the system could subsequently fix the problem
automatically by reconfiguring P .

2.2 Semi-Automatically Identifiable Problems

Scenarios in which problems can only be diagnosed in cooperation with the user
belong to this category.

Non-Automatically Observable System Properties Laptop L and projec-
tor P are switched on but P does not show any output. The HDMI connection
between L and P is stable.

Omniscient Perspective:
– L works correctly.
– The HDMI connection between L and P is stable.
– The projector lamp in P has burned out.

Possible Error Sources: Let us assume that in this scenario we have a more detailed
model of projector P than in the previous scenarios:
– P has a firmware bug.
– The projector lamp of P has burned out.
– The configured resolution of L is too high.

While the latter hypothesis can be discarded by performing an automatic test
if L’s resolution is greater than the maximum resolution supported by P , the
ambiguity between the first two diagnosis candidates remains. In this case the
user needs to check the projector-related properties.

Designing a Diagnostic Engine for Smart Environments 5

It can be argued that those two observations can only be carried out by
technicians and therefore the true cause of error is still hard to retrieve. On the
other hand, the problem could be clearly limited to projector P by the diagnostic
engine so that in a real world scenario the projector could just be replaced as
an immediate retaliatory action.

Multiple Simultaneous Faults Both laptops, L1 and L2, the server S and
the projector P are switched on and are in proper condition. However, P does
not display anything.

Omniscient Perspective:
– All components work correctly.
– The HDMI cable between L1 and P , and the VGA cable between L2 and P are

broken.
– P is configured to use the VGA port as input source.

Possible Error Sources:
– The HDMI cable between L1 and P is broken.
– The VGA cable between L2 and P is broken.
– The HDMI cable between L1 and P and the VGA cable between L2 and P are

broken.

First, the diagnostic engine should determine which input has been selected by P .
Therefore, S is commissioned to request information on the input configuration
of P . This returns V GA as the active input port and thus it can be reasoned
that the VGA connection between L2 and P is broken.

Now that we are certain about one component of our diagnosis it would
also be helpful to know if there might be any more faults in the system. Let us
now assume that P ’s input configuration is read-only so that S cannot alter the
setting automatically. However, in order to check whether the HDMI connection
between L2 and P is broken, we need to test if P also does not show anything
if HDMI is selected as input. Thus, the diagnostic engine has to ask the user to
carry out this diagnostic action and then tell whether P shows something or not.
The user reports that the screen is still blank after HDMI has been defined as
input. Ultimately, the diagnostic engine concludes the following: both the HDMI
connection between L2 and P as well as the HDMI connection between L1 and
P are broken.

If the user was unable to perform the diagnostic step of altering the system’s
configuration to provide a new observation, it would not be decidable whether
the HDMI connection between L1 and P was broken or not. A common ap-
proach to handle this knowledge gap would be to assume that everything is
working correctly unless we have concrete evidence to retract such assumption
(e.g. by observing a symptom). Below we shall see how this type of so-called
non-monotonic reasoning is handled from a logical perspective.

Disconnected Subsystems Until now, we have assumed that our diagnos-
tic engine somehow can instruct system-inherent components, e.g. servers, to
perform observations or alter the system configuration. In reality however, the

6 Eric Heiden, Sebastian Bader, and Thomas Kirste

diagnostician itself is a device or a software running on network-attached hosts
which might fail or loose connection – just like any other component. To exam-
ine this property in detail, let us assume the following scenario: Laptop L, the
diagnostic engine D und the NAS (Network-Attached Storage) are connected
to switch S via Ethernet. While all devices are working as expected, L cannot
connect to NAS.

Omniscient Perspective:
– All components work correctly.
– The Ethernet between D and S is broken.
– The Ethernet connection between NAS and S is broken.

Possible Error Sources:
– The Ethernet connections D – S and NAS – S are broken.
– The Ethernet connections D – S and L – S are broken.
– The Ethernet connections D – S, L – S and NAS – S are broken.

The diagnostic engine cannot perform further observations automatically be-
cause it is disconnected from the subsystem B = {NAS, L, S}. Therefore, all
non-empty permutations of broken Ethernet connections between components
c1, c2 ∈ B, together with the fact that Ethernet connection D – S is broken, are
valid diagnoses. This ambiguity can only be resolved if D gets access to S or by
asking the user to check all connections.

2.3 Unidentifiable Problems

This class comprises diagnostic scenarios where the diagnostic engine is unable
to diagnose the symptoms – not even in cooperation with a human user.

Hidden Interactions After switching on a lamp, all lamps and projectors are
suddenly powered off.

Omniscient Perspective:
– All components work correctly.
– The lamps and projectors are connected to power sources which share the same

fuse.
– Due to power overload of too many connected devices, this fuse was tripped and

caused the power outage for all projectors and lamps.

Possible Error Sources: N/A

The engine cannot propose any diagnoses since it is not aware of the interaction
between projectors and lamps. The fact that their power sources share the same
fuse might not be indicated in the wiring plan. The engine cannot even ask the
user to check the fuses because it can only reason about facts which are provided
as system knowledge.

Several approaches exist to handle hidden interactions (see [2, 9]). If we ob-
serve a malfunction which affects completely unrelated parts of the system like
in the given scenario, it can be assumed that hidden, unintended interactions
have occurred.

Designing a Diagnostic Engine for Smart Environments 7

Intermittent Abnormalities In this scenario, the diagnostic engine runs di-
rectly on the user’s laptop L.

The switch S intermittently becomes unavailable. Laptop L is working cor-
rectly and the Ethernet connection between L and S is stable.

Omniscient Perspective:
– Laptop L is working correctly.
– The Ethernet connection from L to S is stable.
– Switch S is congested sometimes when the user wants to access it.

Possible Error Sources: N/A

Imagine that coincidentally, every time the diagnostician tries to access S, the
switch responds immediately. This observation contradicts with the user’s obser-
vation and in contrast shows no symptoms. Therefore, it can only be reasoned
that S is working correctly despite the apparent malfunction.

This problem could be addressed by letting the diagnostic engine constantly
observe every network access L is making. This kind of online diagnosis would
then experience – just like the user – the symptomatic timeouts. However, dur-
ing the course of this paper only offline scenarios are considered in which a
malfunction has occurred and the user subsequently requests an explanation of
the observed symptoms.

Wrong Observations Laptop L and projector P are switched on but P does
not show any output (cf. Scenario 2.1).

Omniscient Perspective:
– All components work correctly.
– The projector is configured to select its HDMI port as input source.
– The observation provided by the user is wrong, i.e. P indeed displays content

from L.

Possible Error Sources:
– P is broken.

This diagnosis (that P is broken) is wrong because the diagnostician trusted the
user-provided observation and does not have any automatic verification methods
for given observations. Observations (human-made or automatic) do not need
to be invalid only because of human deceit, often technical devices themselves
report false status information if they are broken, i.e. they are behaving ab-
normally. This problem could be tackled by assigning quantifying the degree
of belief when dealing with arbitrary inputs. A diagnostic theory of involving
probabilistic reasoning to deal with uncertainty is given by [11].

3 PRELIMINARIES

Before introducing two main concepts of diagnostic reasoning, namely consistency-
based and abductive diagnosis, this section covers the general notion of diagnosis
in the real-world context and its development to an A.I. discipline.

8 Eric Heiden, Sebastian Bader, and Thomas Kirste

While the term diagnosis can also mean the pure decision whether a system
is working or not, this paper is based on the definition of diagnosis as a method
to identify the causes of observed system faults as precisely as possible.

Similar to real world diagnosis where experts are asked to find those parts
in complex systems, like cars or powerhouses, which account for the observed
malfunction, diagnosis as a subfield in artificial intelligence similarly provides
techniques to identify causes of observed symptoms – especially for applications
which require significant expert knowledge. This task requires observations of
the actual, possibly unexpected system behavior as well as knowledge of the
problem domain sufficient enough to infer meaningful conclusions.

Diagnostic Engines first emerged during the late 1960’s to early 1970’s in the
form of rule-based expert systems [1]. Causal representations of symptoms and
faults were explicitly written as hard-coded or compiled knowledge as an attempt
to mimic human expert behavior. These systems had major drawbacks when
applied to non-static domains were properties evolve and affect the causal rela-
tionships between observed problems and underlying error sources. Knowledge
engineers were required to cooperate with human experts in order to manually
update the knowledge base.

In contrast to these heuristic approaches, model-based diagnosis which emerged
during the 1980’s, allowed for an estimation of system behavior which can be
compared to the observed outcomes in order to detect abnormalities. These
systems showed a higher degree of robustness compared to rule-based systems
because they could better handle unexpected cases.

Current trends in diagnostic systems present the coupling of classical model-
based diagnosis with other AI techniques like neural networks or genetic algo-
rithms [1] to improve knowledge acquisition and diagnose complex and dynamic
systems more effectively.

Model-based diagnosis is a commonly used framework that works by mod-
elling a system consisting of interacting components or subsystems via logical
formulas. While it possible to define fault models, during the course of this pa-
per only the system’s expected behavior is modelled as in [14, 4, 11]. Conversely,
the outputs of the real-world implementation of the system are measured and
the observations are as well logically formalized. The discrepancies between the
observations and the predicted behavior are finally used to diagnose faulty com-
ponents whose behavior contradict the model’s behavior.

Reiter proposed in [13] a logic for default reasoning called default logic which
extends first-order logic by allowing to perform default assumptions. While in
standard logic it can only be stated that something is either true or false,
default logic can express facts that are typically true only with a few exceptions.

For example, the fact that almost all projectors have a VGA port can be
represented as follows in default logic:

projector(x) : M has-vga(x)

has-vga(x)

Here M stands for it is consistent to assume so that this default rule can be
read as: given the fact that x is a projector (prerequisite) and it is consistent to

Designing a Diagnostic Engine for Smart Environments 9

believe that x has a VGA port (justification), then one may assume that x has
a VGA port (conclusion). To specify the notion of this consistency requirement,
the semantics of default logic is described in the following.

A default theory is defined as a pair (W,D), where D is a set of default
rules and W is the set of logical formulas which define our background theory.
If the prerequisite of a given default D is entailed from our theory W and every
justification is consistent with W than we can add the conclusion to the theory.

Since the consequence relation is not monotonic, default reasoning is a kind
of non-monotonic reasoning.

First-order logic is monotonic, i.e. given two sets A and B of first-order
formulas where A ` w, then every model of A ∪ B is also a model of A so that
A ∪ B ` w. If we assume B to be newly discovered information, the addition
of B to our existing knowledge A does not affect the outcome w of A ∪ B with
respect to the models of A. That means, if later discoveries reveal contradictions
to formerly assumed rules they cannot be retracted.

However, in any reasoning method were assumptions or beliefs are made,
like default reasoning or abductive reasoning (Section 3.2), it is necessary to
retract an assumption in order to avoid inconsistencies with newly gained evi-
dence. Adding knowledge to the theory which contradicts the assumptions shall
invalidate them and thus reduce the set of conclusions that can be derived from
the theory. The notion that further evidence does not monotonically grow the
set of derivable propositions describes the property of non-monotonic reasoning.

3.1 Consistency-Based Diagnosis

The theory by Reiter on Diagnosis from First Principles [14] is a model-based
approach which conjectures about faulty components by only selecting hypothe-
ses which are consistent with the system’s model and the observations. This
approach laid an important foundation for the automatic identification of prob-
lems not only in electric circuitry as in the early days of automatic diagnosis, but
universally across many different domains. In the following, diagnosis from first
principles will be used to present the concept of consistency-based diagnosis.

In this model-based approach the only information available to explain dis-
crepancies between the observed and correct system are first principles, i.e. the
model of the system’s expected behavior represented using logical formulas. Re-
iter’s theory is applicable to any logic L which fulfills the following criteria:

1. Binary semantics so that every sentence of L has value true (>) or false
(⊥).

2. {∧,∨,¬} are supported logical operators which have their usual semantics
in L.

3. � denotes semantic entailment in L.
4. A sound, complete and decidable theorem prover exists for L.

In general, first-order logic (FOL) is only semidecidable, i.e. the question
whether an arbitrary formula f is logically valid (a theorem) in L can always be

10 Eric Heiden, Sebastian Bader, and Thomas Kirste

answered correctly whereas a negative or no answer at all will be given if f is not
valid in L. To still fulfill the last criterion, we will from now on define a decidable
subset of FOL as the logic L to be used for diagnosis. This is established by
requiring L to be a FOL with finite domain of discourse D (Herbrand universe)
and finite Herbrand base.

Definition 1 (System). The system is defined as a pair (SD, COMPONENTS) con-
sisting of SD, the system description which contains rules of logic L describing
the system’s normal behavior, and COMPONENTS, the finite set of constants rep-
resenting the components.

Components can be devices, connections, subsystems, or any entity that could
be (partially) responsible for the system’s malfunction and should therefore be
included in the diagnosis. The system description makes use of ab(c)-predicates
which express for component c ∈ COMPONENTS that c is behaving ”abnormally”.
Thus, when modelling the intended system behavior these abnormal-predicates
only occur in its negated form.

For a running example let us revisit our first fully automatically diagnosable
scenario. In addition to the system properties described before, let us also assume
that projector P ’s lamp B is a component which can burn out preventing P to
show anything.

works (l) :− not ab (l) .
works (p) :− not ab (p) .
shows image (p) :− works (l) , works (p) ,

not ab (b) , not ab (hdmi) .

Fig. 2. Prolog implementation of a simple diagnosis example

We could represent this scenario using the following system description SDas
a set of definite Horn clauses shown in Figure 2 Similarly to SD, the obser-
vations are given as a finite set of logical formulas in L as well. A diagnos-
tic problem is defined as the triple (SD, COMPONENTS, OBS). For this example, let
OBS = {¬ image(P),works(L)} be the set of our observations, i.e. we observed
that P did not show an image and L was working.

A diagnosis for the problem (SD, COMPONENTS, OBS) is defined as the minimal
set (under set inclusion) ∆ ⊆ COMPONENTS where SD ∪ OBS ∪ {ab(c) | c ∈ ∆} ∪
{¬ab(c) | c ∈ COMPONENTS\∆} is consistent.

Generally, a valid diagnosis would be the trivial solution that all compo-
nents are faulty, since we are following the model-based approach were only the
expected behavior is known. Therefore, the Principle of Parsimony has been
established in [14] and advocates the minimal diagnosis. To find minimal di-
agnoses it helps to reformulate the aforementioned definition of ∆ in terms of
conflict sets.

Designing a Diagnostic Engine for Smart Environments 11

A conflict set for (SD, COMPONENTS, OBS) is defined as C = {c1, . . . , c2} ⊆
COMPONENTS such that SD∪OBS∪{¬ab(c1), . . . ,¬ab(cn)} is inconsistent. A con-
flict set C is minimal iff no subset C ′ ⊂ C exists that is also a proper conflict
set satisfying the equation.

Consistency-based diagnosis interprets the consistency requirement by the
semantics of classical logic where a logical formula f ∈ L is consistent if f has
model, i.e. an interpretation or assignment of variables of f to the domain of dis-
course D so that the meaning of f is True. Therefore, we can assume the unre-
solved consistency terms works(P) and ¬works(P) to be True since a model
exists for SD∪OBS∪{ab(c) | c ∈ ∆}∪{¬ab(c) | c ∈ COMPONENTS\∆}∪{works(P)}
and another model exists for SD ∪ OBS ∪ {ab(c) | c ∈ ∆} ∪ {¬ab(c) | c ∈
COMPONENTS\∆}∪{¬works(P)}. As we will later see, this consistency definition
of non-stable models marks the fundamental difference to abductive reasoning
(cf. Section 3.2). The following two conflict sets can be found:

C1 = {ab(B),ab(P),ab(HDMI)}
C2 = {ab(B),ab(L),ab(P),ab(HDMI)}

Hence we have the minimal conflict set is C1 = {ab(B),ab(P),ab(HDMI)}.
For a collection S of sets, a hitting set H for C is a set H ⊆

⋃
S∈C such that

∀S ∈ C : H∩S 6= ∅. A hitting set is minimal if no proper subset of it is a hitting
set. Reiter uses this definition to reformulate the characterization of diagnoses:
∆ ⊆ COMPONENTS is a diagnosis for (SD, COMPONENTS, OBS) iff ∆ is a minimal
hitting set for the collection of minimal conflict sets for (SD, COMPONENTS, OBS).
For our example, three minimal hitting sets can be found which represent our
minimal diagnoses ∆1 = {ab(B)}, ∆2 = {ab(P)}, ∆3 = {ab(HDMI)}.

3.2 Abductive Diagnostic Reasoning

Abductive reasoning is a form of logical inferencing that hypothesizes explana-
tions for a given observation, and is viewed as a competing concept to consistency-
based diagnosis. As a powerful concept to handle commonsense reasoning, it has
been applied in the diagnosis domain [5].

Abduction became a powerful reasoning method to Artificial Intelligence
especially in the field of diagnosis which is considered by [3] as one of the most
representative and best understood application domains for abductive reasoning.
It has further served as a basis for other types of expert systems, e.g. in the
medical domain, and apart from diagnosis in areas such as planning, natural
language understanding and machine learning [3].

Abduction is a logical reasoning method that generates, given a logical theory
or domain knowledge T and a set of observations O, explanations (= hypotheses)
E which explain O according to T such that T ∪E � O, and T ∪E is consistent.
Abductive reasoning is a type of non-monotonic reasoning since hypotheses E
which have been made given theory T and observations O might become obso-
lete due to new observations O′ which require the reasoning system to retract
those explanations which do not meet the two constraints from above. Therefore,

12 Eric Heiden, Sebastian Bader, and Thomas Kirste

default reasoning can be based on abduction instead of non-monotonic logics so
that defaults are represented as hypotheses to be made or retracted instead of
deriving conclusions within non-monotonic logics (cf. [6]).

An abductive theory is a triple (P, IC,A), where P is a logic program defining
the domain knowledge, IC is a set of integrity constraints (logical formulas)
which define constraints on the abduced predicates, and A is a set of abducible
ground atoms.

We can now define express (P, IC,A) in terms of the diagnosis domain in
order to identify faulty components ∆ ⊆ COMPONENTS in a malfunctioning system
in the same way as finding the best explanations for given symptoms. A system
(SD,COMPS) is formalized as follows: SD is the system definition, as defined
by P , and COMPS is the set of system components which can be possible sources
of errors, as defined by A.

The integrity constraints IC can be used to additionally constrain the gen-
erated diagnose, e.g. by stating that certain components A′ ⊆ A cannot be
diagnosed as faulty.

When diagnosing a system, one needs to observe the malfunction and rep-
resent these symptomatic observations as a set of logical formulas OBS. The
diagnosis problem (SD, COMPS, OBS) is solved through abduction by retracting
some of the ¬ab-assumptions. The resulting set ∆ ⊆ A is a valid diagnosis if it
explains all of the observed symptoms.

To meet the goal of providing useful diagnoses which do not contain any,
for the fault explanation insignificant components, the Principle of Parsimony
advocates minimal diagnoses. Hence, a diagnosis for (SD, COMPS, OBS) is according
to [12] a minimal set ∆ ⊆ A such that SD ∪∆ � OBS ∩ IC.

We will use implementations of abductive reasoning in the form of logic pro-
gramming and answer set programming. These systems follow the stable model
semantics which was motivated by formalizing the behavior of SLDNF resolu-
tion (selective, linear, definite resolution with negation as failure), a common
resolution strategy for logic programming systems like Prolog.

For any set M of atoms from Π, let Πm be the program (reduct) generated
from Π by removing

1. each rule that has a negative literal ¬l in its body where l ∈M , and
2. all negative literals in the bodies of the remaining rules.

Since ΠM is now negation-free, it has a unique minimal Herbrand model. If this
model is equal to M , then M is a stable set of Π [7].

Answer Set Programming (ASP) is a form of declarative programming which
is primarily addressed to solving NP-hard search problems. It has its roots in
Reiter’s theory of default reasoning and in the generation of stable models.

In ASP, search problems are first ground-instantiated by so-called grounders
like LPARSE which are front-ends accepting logic programs. In the next step,
ASP solver like SMODELS or DLV solve these computable search problems
by calculating all stable models of the grounded programs. Unlike SLDNF-
employing reasoning tools like Prolog, ASP solvers always terminate [10]. In

Designing a Diagnostic Engine for Smart Environments 13

addition, the performance of current ASP solvers is comparable to highly effi-
cient SAT solvers because similar algorithms are used.

Consistency-based and abductive diagnosis both represent techniques for
identifying the error sources of a malfunctioning system. Although these meth-
ods can be applied to the same task, the results that are calculated sometimes
differ. In contrast, abductive diagnosis is more restrictive on the selection of diag-
nostic explanations: the diagnosis ∆ in conjunction with the system description
SD must have a stable model which logically entails the observations.

One difference between consistency-based and abductive diagnosis is that
the former applies a weaker criterion on valid diagnoses, because it uses the
consistency formula in the traditional FOL semantic.

4 CONCEPT

The following section presents the conceptual ideas and algorithm behind the
implemented diagnostic engine.

4.1 Refining Hypotheses

The diagnosis ∆ is a set of hypotheses which explain the system’s malfunction
based on the given knowledge as logic program P and observations OBS. Although
can already calculate minimal diagnoses which only select as few components
as possible using consistency-based or abductive reasoning, there are often too
many explanations given to efficiently isolate the true causes of the problem. In
fact, model-based diagnosis is often criticized for not being able to ‘pinpoint a
failing component from the available symptom information’ [8].

Therefore, further observations are necessary to refine the diagnosis. Let us
assume that P is given by the set of Horn clauses and our logic program supports
negation as failure to be interpretable within stable model semantics.

What could be a further observation? Consider our running example and its
system description shown as logic program in Figure 2. In the context of semi-
automatic diagnosis it is assumed that the user does not know the true source
of errors, i.e. faulty components represented by ab-predicates. Based on the
observation of not shows image(p) we can only propose to observe works(l)

or works(p) as these two predicates belong to rules in P which further con-
tain ab-predicates. After the initial observation of not shows image(p) the set
of minimal diagnoses would be {{l}, {p}, {b}, {hdmi}}. If the user would ob-
serve works(l), then according to stable model semantics the diagnostic engine
would retract {l} from the diagnosis. This refinement of the diagnosis exemplifies
non-monotonic reasoning where additional knowledge leads to the retraction of
assumptions.

Starting from the initial, non-empty diagnosis ∆0 which has been computed
by at least a single observation of the system’s symptoms (otherwise ∆0 = ∅ since
P is consistent) the diagnostic engine proposes predicates G ⊆ P\(OBS∪{¬l | l ∈
OBS}) which have not yet been observed (neither negated nor positive). If the

14 Eric Heiden, Sebastian Bader, and Thomas Kirste

user or an automatic middleware system can observe the predicate p ∈ G, p or
¬p is added to our observations OBS, depending on what was observed about
p. If p or ¬p are not observable, the diagnostic engine should propose a new
predicate for observation, if available. Otherwise, no more observations can be
proposed.

Algorithm 1 FindAbducibles(p, T, OBS) calculates the set of abducibles ⊆
ABDUCIBLES which can be abduced from T ∪ {p} in case p is observed. Here, a
reasoning system, e.g. ASP system is required in order to calculate the stable
models of the current theory.

Algorithm 1 Finding abducibles

procedure FindAbducibles(p, T, OBS)
R← ∅
// CSM = CalculateStableModels

for all A← CSM(T ∪ OBS{p}, ABDUCIBLES) do
R← R ∪A

end for
return R

end procedure

Note that we are unifying the minimal diagnoses which possibly consist of
multiply components which together must be faulty in order to explain the
given symptom. Instead of having sets of sets of possibly faulty entities, the set
representation of all candidates allows us to quantify for each diagnosis step the
utility of an observation.

4.2 Proposing Observations

The information which abducibles can be eliminated from the diagnosis ∆ if we
observe that a predicate p or its negation is true can then be used to propose
such p which maximally reduces ∆. Thanks to the Algorithm 1 we can calculate
which diagnosis (or any) would result from observing p or ¬p so that we can
select a p which would result in the smallest possible diagnosis 6= ∅.

4.3 Interactive Diagnosis

The diagnosis process as defined in Algorithm 3 starts with the knowledge base,
i.e. program, P and a symptomatic observation OBS which is a set of positive or
negated predicates occurring in P . The diagnosis∆ is calculated by accumulating
all abducibles ∈ A = {ab(. . .)} which explain the given observation OBS. Using
further, proposed observations as from Algorithm 2, the diagnosis is refined or
assured: Abducibles contradicting ∆ will be used to reduce ∆ by removing the
negations of these abducibles. Abducibles which confirm ∆ will be added to
the fixed diagnosis ∆f . ∆f is reflected during the diagnostic reasoning process

Designing a Diagnostic Engine for Smart Environments 15

Algorithm 2 Selecting the optimal observation.

Require: ∆ 6= ∅ ∧ OBS 6= ∅ ∧∆f ⊂ ∆ ∧ ∀p ∈ P : ObservingCost(p) > 0
procedure ProposeObservation(P,∆,∆f , OBS)

O ← ∅
for all p ∈ P\(OBS ∪ {¬l | l ∈ OBS}) do

pab+ ← FindAbducibles(p, P, OBS)
pab− ← FindAbducibles(¬p, P, OBS)
v ← min{pab+, pab−}
// if abducibles can be calculated.
O[p]← v

end for
if O 6= ∅ then

return arg min
p∈P\OBS

O[p]

else
return ⊥

end if
end procedure

using the Integrity Constraints IC. These constraints limit the calculated set
of abducibles by only allowing abducibles which do not conflict with ∆f . The
diagnosis finishes if no further observation can be proposed or if ∆ is small
enough so that the user can troubleshoot the problem.

5 IMPLEMENTATION

The implemented diagnostic system covers the full workflow from extracting
knowledge of semistructured wiring information to interactively providing the
user with diagnoses. This section first covers the general architecture of the
implemented system and then describes the necessary implementation steps in
detail from start to finish of the diagnosis workflow.

5.1 Architecture

The module for knowledge extraction takes as input wiring information from a
CSV (comma-separated values) table and is further provided with device-related
code to model the behavior of different devices as well as the interaction between
them. This knowledge can be represented via disjunctive datalog and abductive
logic programs. By formulizing the wiring graph in DOT (a graph description
language) it can be visualized by graph drawing tools like dot or neato from the
Graphviz package.

The formal description as a logic program can then be used via ProLogICA
to find diagnoses by performing abductive reasoning or DLV to diagnose using
answer set programming. The implemented Diagnostic Engine uses DLV to gen-
erate diagnoses if provided with an initial observation by the user. An interactive

16 Eric Heiden, Sebastian Bader, and Thomas Kirste

Algorithm 3 The complete diagnosis process.

Require: P 6= ∅ ∧ OBS 6= ∅
Require: Abduce(G,P, IC,A) queries the Abductive Reasoner given the theory

(P, IC,A) and goal G, and subsequently yields all minimal solutions ⊆ P(A) which
explain G.
procedure Diagnose(P, OBS)

∆← ∅
∆f ← ∅
while (∆ not refined enough and
∃p ∈ P : p 6∈ OBS and ¬p 6∈ OBS and
(({p} ∪ OBS ∪ P ∪∆f consistent) or
({¬p} ∪ OBS ∪ P ∪∆f consistent))) do
∆←

⋃
Abduce(OBS, P,∆f , {ab(. . .)})

β ← ProposeObservation(P,∆,∆f , OBS)
if β = ⊥ then

return ∆
. No more observations can be proposed

end if
if β is observable then

(pab+, pab−)←
FindAbducibles(β, P,∆,∆f , OBS)

if β is observed as false then
OBS← OBS ∪ {¬β}
∆← ∆\{¬l | l ∈ pab−}
∆f ← ∆f ∪ pab−

else
OBS← OBS ∪ {β}
∆← ∆\{¬l | l ∈ pab+}
∆f ← ∆f ∪ pab+

end if
end if

end while
return ∆

end procedure

Designing a Diagnostic Engine for Smart Environments 17

ProLogICA: abduce
dlv: diagnosis frontend

User

Diagnosis

Diagnostic Engine

Automatic observations as
additional LP Rules

Middleware

Logic Programming Rules
(Prolog, dlv)

Knowledge

Wiring information in CSV Empirical Knowledge

Device Mechanics

Device Interactions

Rules, facts, constraintsKnowledge

Diagnosis
sufficient or

empty

Calculate diagnosis

Observation
is automatable

Propose observation

yes

Observations

Observable property no

Observations

Observable
property

yes

no

Knowledge Extraction
(Python)

Disjunctive Datalog

Abductive Logic Program

GraphViz

Fig. 3. Architecture of the implemented Diagnostic System

loop has been implemented to refine the calculated diagnosis based on automatic
observations by querying the middleware (e.g. publish-subscribe infrastructure)
or by instructing the user to conduct observations of non-automatically observ-
able system properties.

The interactive diagnosis session finishes once the user accepts the diagno-
sis as refined enough to troubleshoot the symptoms, or if there are no further
observable (neither by a human nor the middleware) system properties which
could improve the diagnosis.

5.2 Knowledge Representation and Reasoning

Diagnostic reasoning heavily depends on the provided information of the im-
plemented system and thus can be seen as a discipline belonging to knowledge
representation and reasoning (KR).

The logical representation of a system and its diagnosis using logical reason-
ing has several advantages over other diagnosis approaches:
– Logical formulae to describe the system structure can be extracted easily

from existing system data, e.g. wiring diagrams or technical manuals.
– The logical rules are human-interpretable so the user can comprehend and,

if necessary, reproduce the diagnostic reasoning.
– Only normal behavior needs to be modeled allowing for smaller (human)

effort to define the system since no fault definitions are required.
– It is ensured that the calculated diagnosis is minimal, i.e. the minimal set

of possible sources of error is returned. This reduces further troubleshooting
efforts.
Because of the pecularities of the two target platforms, ProLogICA and DLV,

two separate modules have been implemented to formalize wiring information as

18 Eric Heiden, Sebastian Bader, and Thomas Kirste

logic programs, namely Abductive Logic and Datalog Programs. This decision
was enforced for the following reasons:
– ProLogICA relies on the non-declarative (linear) semantic of python so that

transitive connections cannot be defined recursively (in contrast to DLV) as

conn(A,C) : −conn(A,B), conn(B,C).

but instead must be stated using a helping predicate rconn which handles
the recursion so that

rconn(A,C) : −conn(A,B), rconn(B,C).

– ProLogICA exhibits poor performance on too many nested and especially
non-grounded rules. Thus, connections between all devices have been re-
solved via depth-first search.

– Not-ab-statements cannot be written as not(ab(...)) but only not ab(...) in
DLV while the latter syntax was not supported on the used SWI Prolog
implementation.

– DLV requires ab-statements to be grounded, while this leads to cryptic con-
stants in Prolog.

5.3 Available Implementations

The diagnostic engine has been realized using two different implementations:
the answer set programming environment DLV and the abductive reasoning
tool ProLogICA.

DLV stands for DataLog with Disjunction (where V represents the logical
operator ∨) and is a disjunctive logic programming system. Rules can be written
in disjunctive datalog (function-free) of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk,¬bk+1, . . . ,¬bk+m.

which allows DLV as an ASP system to solve problems whose complexity lies
beyond the solvable scope of non-disjunctive programming. DLV imposes a safety
condition on variables in rules such that a rule is logically equivalent of its
Herbrand instances.

DLV provides a diagnosis front-end for Abductive Diagnostic Reasoning as
well as for Consistency-Based Diagnosis. As described in [5], a diagnostic problem
represented by the set of observations OBS, the system description SD and the
set of ab-atoms can be rewritten in disjunctive datalog so that every stable
model which the ASP solver finds represents a diagnosis. The input programming
language for this front-end however does not support disjunctive datalog and
instead falls back to traditional datalog (function-free logic programming).

ProLogICA is an implementation of Abductive Logic Programming (ALP) in
Prolog. It allows the user to define in a single file the abductive theory (P, IC,A),
where P represents the set of rules to describe the domain knowledge, IC is a
set of integrity constraints, and A declares the abducible predicates [12].

Designing a Diagnostic Engine for Smart Environments 19

In contrast to competing implementations of abductive reasoning, ProLog-
ICA allows the occurrence of negated abducibles so that the formalization of
normal system behavior can be made as described in Reiter’s Theory.

5.4 Semi-Automatic Diagnosis

Human-machine cooperation is realized via proposing system properties to the
user which would improve the diagnosis. This section presents the implementa-
tion of this fundamental aspect of semi -automatic diagnosis.

Given a scenario as logic program which represents the system description,
and a file of hypothesis declarations which describe the possible ab-predicates to
be assumed as a diagnosis, the user first needs to provide an initial observation.
Then, a diagnosis is calculated. If this calculation fails, the observations contain
a contradiction or no hypotheses could be found. In order to simulate automatic
observations, an additional file can be provided which contains non-abducible
predicates either negated (using not) or non-negated. If the ranking of possible
observations returns predicates that are automatically observable, these obser-
vations are added to the set of current assumptions. If there are no automatic
observations, the user is asked to perform a proposed observation. These obser-
vations help to refine the diagnosis so that |∆n+1| ≤ |∆| for every loop of the
interactive diagnosis.

6 RESULTS

0 2 4 6 8 10 12 14 16 18 20 22 24 26
10−2

10−1

100

101

102

103

Number of abducible predicates

T
im

e
in

s
e
c
o
n
d
s

FD

FDsingle

FR

FRsingle

FRmin

Fig. 4. Benchmark Results of the DLV Diagnosis Frontend

20 Eric Heiden, Sebastian Bader, and Thomas Kirste

The results show that it is unfeasible for DLV to calculate minimal diagnoses
under the subset-relation. Even for 24 possible faults in the given scenario, it took
more than 12 minutes to calculate a diagnosis. However, single fault diagnosis
and non-minimal diagnosis showed the vast performance gain which ASP systems
can provide. Thanks to grounding of the given program and an efficient solver,
DLV is able to handle complex scenarios and logic programs with (in our case
more than 1500 lines of code) efficiently.

ProLogICA did exhibit no such problems as DLV when calculating mini-
mal diagnoses. Although the number of abducible predicates does not seem to
considerably influence its calculation performance, the type of knowledge repre-
sentation played a crucial role whether ProLogICA was able to find a solution,
or to not terminate. Especially rules which were highly nested, or with non-
grounded variables constantly inhibited ProLogICA from terminating or finding
useful solutions.

7 SUMMARY

The implemented diagnostic engine provides an interactive environment where
in cooperation with the user a sufficient diagnosis can be found. The paper pro-
vided a theoretical background, discussed several approaches and the algorithmic
framework to realize semi-automatic diagnosis in smart environments.

However, several qualifications must be imposed in order to guarantee useful
and timely diagnoses. With the current implementation, either single faults can
be detected efficiently despite a complex system description, or the system’s
model needs to simplified. This can be done by avoiding deep nesting in the
system description or by limiting the set of possible fault candidates.

The diagnostic engine could be improved by further implementing context
knowledge of the components to be diagnosed. Heuristics could be applied to
automatically limit the set of faulty components. If the model-based diagnostic
engine would have empirical information available to not treat every component
equally as a potential source of malfunction, the selection of diagnosis candi-
dates could be greatly accelerated. Heuristic knowledge would also provide the
user with better explanations from the beginning since empirical information
on probable faults can be used. These symptom-failure association rules could
be learned from experience (cf. [8]) to better mimic the expertise of a human
diagnostician. Performance improvements could be made over pure model-based
diagnosis due to the caching of rules.

References

1. C Angeli. Diagnostic Expert Systems: From Experts Knowledge to Real-Time
Systems. Advanced Knowledge Based Systems: Model, Applications & Research,
1:50–73, 2010.

2. Claudia Böttcher. No Faults in Structure? How to Diagnose Hidden Interaction.
Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI’95), pages 1728–1735, 1995.

Designing a Diagnostic Engine for Smart Environments 21

3. Henning Christiansen. Abductive reasoning in Prolog and CHR. Science, pages
1–18, 2005.

4. Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2):127–162,
1986.

5. Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. Jour-
nal of the ACM, 42(1):3–42, 1995.

6. K Eshghi and R a Kowalski. Abduction Compared with Negation by Fail-
ure. Proceedings of the Sixth International Conference on Logic Programming,
(JANUARY):234–254, 1989.

7. M. Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In 5th International Conf. of Symp. on Logic Programming, pages 1070–1080,
1988.

8. Yoshiyuki Koseki. Experience Learning in Model-Based Diagnostic Systems. Proc.
IJCAI, pages 1356–1362, 1989.

9. Lukas Kuhn and Johan de Kleer. Diagnosis with Incomplete Models: Diagnosing
Hidden Interaction Faults. Proceedings of the 21st International Workshop on
Principles of Diagnosis, pages 1–8, 2010.

10. Vladimir Lifschitz. What Is Answer Set Programming? 23rd AAAI Conf. on
Artificial Intelligence2, pages 1594–1597, 2008.

11. P. J F Lucas. Bayesian model-based diagnosis. International Journal of Approxi-
mate Reasoning, 27(2):99–119, 2001.

12. Oliver Ray and Antonis Kakas. ProLogICA: a practical system for Abductive Logic
Programming. Workshop on Non-Monotonic Reasoning, 2006.

13. R Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132,
1980.

14. R Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

22 Eric Heiden, Sebastian Bader, and Thomas Kirste

Appendix: Springer-Author Discount

LNCS authors are entitled to a 33.3% discount off all Springer publications.
Before placing an order, the author should send an email, giving full details of
his or her Springer publication, to orders-HD-individuals@springer.com to
obtain a so-called token. This token is a number, which must be entered when
placing an order via the Internet, in order to obtain the discount.

8 Checklist of Items to be Sent to Volume Editors

Here is a checklist of everything the volume editor requires from you:

� The final LATEX source files

� A final PDF file

� A copyright form, signed by one author on behalf of all of the authors of the
paper.

� A readme giving the name and email address of the corresponding author.

