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Abstract Autonomous navigation of intelligent physical systems largely depend on
the ability of the system to generate an accurate map of its environment. Confidence-
rich grid mapping algorithm provides a novel representation of the map based on
range data by storing richer information at each voxel, including an estimate of the
variance of occupancy. Capabilities and limitations are attributes of any given sen-
sor, and therefore a single sensor may not be effective in providing detailed assess-
ment of dynamic terrains. By incorporating multiple sensory modalities in a robot
and extracting fused sensor information from them leads to higher certainty, noise
reduction, and improved failure tolerance when mapping in real-world scenarios. In
this work we investigate and evaluate sensor fusion techniques using confidence-
rich grid mapping through a series of experiments on physical robotic systems with
measurements from heterogeneous ranging sensors.

1 Introduction

Fig. 1 Hybrid aerial-ground
robot developed at NASA-JPL
operating in a cave.

Biological systems integrate information from mul-
tiple sources (e.g. vision, touch, etc.) to create a co-
herent and rich representation of the environment
which allows them to reliably act in it. Robotic sys-
tems, too, largely depend on a map of their surround-
ings generated through various sensing instruments
on-board to enable robust autonomous navigation in
obstacle-laden environments. Consider a robot oper-
ating in a subterranean environment, such as a cave
(see Fig. 1). This robot has to take into consideration
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the various physical constraints such as elevation, illumination, visual occlusion,
etc. Although, in some cases, perception operates independently in the context of
exploration, due to the ever-changing nature of the real-world setting in question, it
is imperative to make use of robotic systems with multiple sensor modalities. This
provides the ability to utilize the intrinsic benefits of each sensor system based on
operational requirements.

1.1 Multi-modal Mapping
In mobile robotics, occupancy grids are the most common frameworks for modeling
obstacles. Compared to state-of-the-art grid-based mapping methods, Confidence-
rich Grid Mapping (CRM) [1] not only provides an accurate representation of the
map, but also estimates the consistency between the map error and the reported
confidence value in each voxel. When dealing with robotic systems fusing sensor
data, this form of map representation is particularly useful as it can capture noise
introduced by imperfect sensors and models more accurately.

1.2 Heterogeneous Sensors and Sensor Fusion
Depth cameras provide rich and dense information about the scene based on stereo
matching or structured light (e.g. Kinect v1). However, the usable range of such
sensors is typically considerably limited as the measurement error increases signifi-
cantly at longer distances [2]. On the other hand, although scanning lasers are very
reliable and accurate, even at larger ranges, they only provide range information in
the horizontal plane. As a consequence of this, significant amounts of data must be
collected to obtain detailed topographical information about a region [3]. Instead of
relying on singular sensor modalities, it is beneficial to leverage a variety of sensors
that complement each other [4] in order to improve measurement accuracy, robust-
ness, and spatial and temporal coverage of perception pipelines.

2 Related Work
Grid-based maps have been constructed using a variety of range sensors, including
sonars [5, 6], depth cameras [7], and scanning lasers [8]. Sensor fusion in occupancy
grids for mobile robots was first studied by Moravec [9]. Detailed discussions on ad-
vantages of sensor fusion techniques in occupancy grids including different sensor
architectures was presented by Elmenreich [4]. In 1987, Matthies and Elfes [10]
combined improved versions of the sonar and stereo vision-based algorithms into a
single method that builds maps integrating data from both sensors. This approach
was extended to achieve robust data fusion of data from a monocular camera and a
rangefinder [11]. The main technique using forward sensor models for integrating
point-clouds obtained from different 3D sensors, in particular, time-of-flight sensors
(Swiss-ranger, scanning laser rangefinders), and stereo vision cameras was devel-
oped by Pathak et al. [12]. A factor graph-based optimization framework, designed
using a modular sensor-fusion system that allows for efficient and accurate incorpo-
ration of any navigation sensor of different sampling rates was discussed by Geneva
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et al. [13]. Patel et al. [14] propose a deep learning architecture for the sensor fusion
problem that consists of two convolutional neural networks (CNNs), each consist-
ing of a different input modality, which are fused with a gating mechanism. Deep
neural network architectures that are able to fuse information generated by multiple
sensors and are robust to sensor failures at runtime are demonstrated by Bohnez et
al. [15].

3 Problem Statement
The goal of this paper is to generate a confidence-aware representation of an un-
known environment using measurements obtained from a set of heterogeneous sen-
sors mounted on vehicles with multi-modal capabilities. In particular, we adopt
CRM as a spatial representation of the environment to fuse sensor data from a mul-
titude of robots and sensors. The contributions of this paper are a) the real-time
implementation of distributed CRM, and b) testing and analyzing CRM as a consis-
tent, accurate and convenient mapping algorithm for heterogeneous vehicles using
different ranging sensors.

4 Technical Approach
To obtain more accurate and confidence-aware maps, CRM relaxes several incor-
rect assumptions made by traditional mapping algorithms. First, the dependency
between the voxels inside the same measurement cone is taken into account for
each map update. Second, the inverse sensor model is replaced by a novel “sen-
sor cause model” which enables a principled approach to integrating forward sensor
models into the map update algorithm. Finally, besides the mean of occupancy, each
voxel in the CRM stores and estimates the variance as a confidence value of occu-
pancy. We refer to [1] for more details on CRM and provide a short summary in the
following.

4.1 Confidence-rich Representation
An occupancy map m = [m1, · · · ,mn] is defined as a set of values over a 2D or
3D grid of n voxels. The sensor measurement and the sensor configuration at the
k-th time step are given by zk and xk, respectively. bm

k = p(m|z0:k,x0:k) is the prob-
ability distribution (belief) of occupancy on the map m formulated in a Bayesian
framework, by compressing the information obtained from past measurements
z0:k = {z0, · · · ,zk} and x0:k = {x0, · · · ,xk}. In [1], we show how the map belief can
be updated iteratively via a linear term α i and a constant term β i for each voxel i as
follows:

p(mi|z0:k,x0:k) = (α imi +β
i)p(mi|z0:k−1,x0:k−1) (1)

In our C++ implementation, the map belief bmi
for each voxel i is realized as an

array of particles, i.e. floating-point 32-bit numbers, that are updated by the α i and
β i coefficients. We have experimentally determined the number of particles to be
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50 as a sufficient trade-off between mapping accuracy, computational and storage
efficiency.

4.2 Sensor Cause Model
Unlike conventional occupancy-grid algorithms, CRM maintains the interdepen-
dence between voxels through the Sensor Cause Model (SCM). It is a probabilistic
model that reasons about a voxel ck being cause of the measurement zk under sen-
sor ray xk and is proportional to the sensor forward model p(zk|ck,xk), as well as
the probabilities of the measurement ray bouncing off that voxel ck and traversing
through all the voxels between ck and the sensor:

p(ck|z0:k,x0:k) = p(ck|bm
k−1,zk,xk) = η

′p(zk|ck,xk)m̂
ck
k−1

cl
k−1

∏
j=1

(1− m̂g( j,x)
k−1 ) (2)

where cl denotes the local index of voxel c along the ray x, i.e., cl = g−1(c,x) and
η ′ is the normalization constant.

4.3 Sensor Fusion in CRM
The Sensor Cause Model allows the CRM to embed forward models p(z|c,x) for
various sensors through the same update algorithm while considering the sensor’s
noise characteristics.

For example, for a stereo camera with focal length f and base line db, we can
obtain the forward model p(z|c,x) = N (||Gc − xcam||−1 f db,V ) where Gc is the
3D point on the voxel grid estimated from the disparity matching between the two
images recorded by the camera, xcam is the camera’s position and V is the variance
of the Gaussian noise on the measured disparity.

The forward model provides us with its own uncertainty measurement that is
embedded in the SCM such that the map update step (cf. Eq. 1) does not need
to be hand-engineered for various sensors, i.e. it is sensor-agnostic, as opposed to
conventional grid mapping algorithms. Measurements obtained from heterogeneous
sensors contribute based on their accuracy to the map update, such that sensor fusion
follows naturally from the Bayesian framework CRM is based on.

5 Experiments
In this section, we present experiments to analyze the performance of multiple sen-
sors and fusion thereof on physical robotic systems. All the experiments were car-
ried out at the Center for Autonomous Systems and Technologies (CAST3) located
at California Institute of Technology (see Fig. 3 left). CAST has a 20×12×13 m fly-
ing arena equipped with an OptiTrack4 motion capturing system instrumented with
48 high-definition video cameras. We manually control the robots and use OptiTrack
pose estimation throughout all our experiments.

3 http://cast.caltech.edu
4 http://optitrack.com
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5.1 Sensors and Vehicles
Throughout our experiments, we use the following two robotic mobility systems
on which CRM was running onboard, implemented in C++ with ROS [16] integra-
tion. We provide a schematic data flow diagram of our hardware configuration in
Fig. 2. While each robot independently computes the map onboard, a laptop serves
as ground station to collect diagnostic information and data for visualization pur-
poses.
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Vehicles
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Fig. 2 Block diagram of the data flows in the three experiments that were conducted.

5.1.1 Rollocopter
Developed at NASA Jet Propulsion Laboratory (JPL), Rollocopter is a six degrees-
of-freedom autonomous hybrid robot for both aerial and terrestrial modes (see Fig. 3
center). It is equipped with an NVIDIA Jetson TX2 microcomputer and two Hokuyo
URG-04LX-UG01 LiDARs that measure ranges within a field of view of 240◦ and
0.36◦ angular resolution at a frequency of 10 Hz. Each Hokuyo sensor is rigidly
mounted to the wheels which rotate as the vehicle moves, giving the planar depth
sensors more coverage of the 3D space. The platform combines energy-efficient
rolling on flat terrains with flying capabilities for more demanding scenarios.

5.1.2 Intel Aero Drone
The Intel Aero drone is a quadcopter powered by the Intel Aero Compute Board
with an Intel Atom x7-Z87505 CPU, equipped with an Intel RealSense R200 depth-
sensing camera which records depth images at 20 Hz. In addition, we mounted a
forward-facing Hokuyo URG-04-UG01 LiDAR (see Fig. 3 right) onto the vehicle.

5.2 Experiment 1
In our first experiment, we investigate the performance of CRM compared to log-
odds mapping on Rollocopter with two LiDARs. We place boxes on the floor as
obstacles to be registered in the map. This presents the first time that any mapping
algorithm has been implemented on this novel robot platform.

5 https://software.intel.com/en-us/aero/drone-kit
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Fig. 3 Flying arena at CAST (left). Rollocopter (center) and Intel Aero Drone (right).

5.3 Experiment 2
We control the Intel Aero drone to take measurements with the RealSense camera
and the Hokuyo LiDAR. Both sensors are aligned forward-facing in this experiment
to compare how well CRM can leverage the combination of both sources of mea-
surements in comparison to log-odds mapping. This experiment serves as our first
sensor fusion application.

The depth measurements from both sensors are processed in real time by the
mapping algorithms, at frequencies of 20 Hz and 10 Hz for RealSense and LiDAR,
respectively.

Fig. 4 Confidence-rich grid
map and overlaid point cloud
generated using the RealSense
stereo sensor and a 2D LiDAR
on the Intel Aero drone from
experiment 2.

5.4 Experiment 3
In our final experiment, we combine the two vehicles, Rollocopter and Intel Aero,
to exchange map updates between each other and fuse measurements from their
particular sensor suites. We manually control the robots in parallel to follow paths
which provide a good coverage of the obstacle course (see Fig. 6 right). The Re-
alSense on the Intel drone is attached downward-facing to obtain depth images of
the floor which overlap significantly with the measurements taken by Rollocopter
moving below the drone. This enables the mapping algorithm to fuse updates from
both robots to obtain a more accurate model of the space that is traversable for Rol-
locopter. A Velodyne VLP-16 3D LiDAR is used to capture the ground-truth of the
environment, as shown in Fig. 5.

With this experiment, we investigate how CRM can leverage heterogeneous sen-
sors and heterogeneous robots in a multi-agent setting. We implement a procedure
that allows for the exchange of map updates across different sensing agents: by
broadcasting the α i,β i coefficients from Eq. 1 for each voxel i, the change in the
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Fig. 5 Left: Orthographic top-down projection of point cloud of CAST captured with a Velodyne
VLP-16 laser scanner. Right: Ground-truth map from Velodyne laser scans.

CRM map can be communicated efficiently without sending the 50 particle values
for each voxel. Every 10 depth measurements, the CRM instance running on each
robot broadcasts these map updates in the form of ROS messages, resulting in a
frequency of ca. 2 Hz (see Fig. 6 left). The receiving CRM instance listens for such
update messages and applies them in accordance to the Bayesian update Eq. 1 as
soon as they arrive.

Fig. 6 Left: Architecture diagram for Experiment 3 with measurement rates for the different sen-
sors (brown) and map update rates (green) between the two CRM instances (blue) running on
Rollocopter and the Intel Aero Drone. Right: Experimental setup at CAST during Experiment 3.

6 Results
In this section, we demonstrate the performance of the heterogeneous sensors when
applied to multi-modal physical robotic systems. For the first experiment, using a
single robot and a single range sensor, Fig. 8 shows the map mean absolute er-
ror (MAE) over time for different sensor noise std deviations. We compare CRM
against log-odds-based grid mapping in the OctoMap framework [17]. The MAE is
averaged over all voxels that were updated throughout the mapping process to best
show the improvement of the affected parts of the map. As an alternative measure of
consistency, we compute the Pearson correlation coefficient between the true error
and the estimated std. deviation (see Fig. 8), which indicates that the std. deviation
estimated by CRM is highly correlated with the error, hence, it reliably captures the
mapping confidence.
For the second experiment, using a single robot and multiple range sensors, we com-
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pare the MAE for CRM and log-odds maps using both modalities combined and
separated. Our results show that CRM yields higher accuracy than log-odds (Fig. 7)
and they indicate that sensor fusion in occupancy grids benefit from our Bayesian
formulation.
For the third experiment, using two robots and multiple range sensors on each robot,
we show qualitative results of the resulting global map using CRM.
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Fig. 8 Evolution of mean absolute error (left) and Pearson correlation coefficient between absolute
error and estimated mapping std (right) for the LiDAR dataset obtained with Rollocopter (Experi-
ment 1).

7 Experimental Insights
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Fig. 7 Mean Absolute Error advantage of CRM
over Log Odds under different sensor modali-
ties (forward-facing LiDAR, forward-facing stereo
camera, fusion of both) on the Intel Drone (Exper-
iment 2). CRM shows an improvement in accuracy
that increases with time regardless of the sensor.

Range sensors have particular noise
characteristics which we observed in
the measurements obtained from the
LiDAR sensors in our experiments.
Spurious Measurements: We ob-
served that scanning lasers produce
a variety of erroneous points in the
vicinity of edges. These phantom
points were usually found behind the
edges close to the laser ray. This ef-
fect became more apparent at points
on laser scans which were affected by
a multitude of far-distanced objects.
LiDARs, e.g. Velodyne VLP-16, that
capture multiple returns for each sin-
gle laser scan, are more robust to spu-
rious measurements compared to the
light-weight Hokuo LiDARs used on
the robots in our experiments.
Surface Reflectance: As scanning lasers rely on the beam reflected from the object
surface to the receiving unit, the strength of the returning signal is affected by the
reflective properties of the surface. Such specular reflection is influenced by the
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distance to the surface, operating frequency and the incidence angle, among others.
As shown in Fig. 9, accurate depth measurements from objects with shiny surfaces
are particularly difficult to obtain and result in missing or erroneous data. Filtering
approaches have been shown to effectively remove echo measurements resulting
from reflective and transparent objects [18].

8 Conclusion and Future Work

Fig. 9 While taking laser scans
from reflective surfaces, such as
the floor, a distinctive group of
wrong measurements appears as
a halo around the non-reflected
measurements. This scan was
taken by rotating the LiDAR
around its axis. For clarity, a sim-
plified CAD model of the testing
area is displayed.

Our experiments have demonstrated that CRM can
be used in a distributed setting where a network of
robots equipped with heterogeneous sensors collab-
oratively construct a consistent representation of the
environment in real time. While log-odds mapping
achieves a similar level of accuracy as the CRM map
given measurements from two equal laser scanners,
the consistency in CRM is significantly higher. Fur-
thermore, CRM has been shown to leverage the ad-
vantages of heterogeneous sensors more effectively,
leading to significant improvements in accuracy.

Future research is directed towards integrating
CRM with planning. Preliminary results in a simu-
lated environment [19] have shown promising per-
spectives for a trajectory optimization procedure that
leverages CRM’s estimated confidence, besides the
mean of occupancy. Such confidence-aware planners
could improve the ability of mobile robots to autonomously navigate in unknown,
unstructured environments. To enable true autonomy, CRM must be combined
with a localization pipeline, e.g. visual-inertial odometry, such as Stereo MSCKF-
VIO [20], or LiDAR-based odometry [21].

In some applications the communication link between the different sensor agents
may be restricted or temporally blocked. Although we only send CRM updates in-
stead of the complete map to reduce bandwidth, the issue of compressing the CRM
map in an unstructured environment remains open for future research.
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