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Abstract— Simulation-to-real transfer is an important strat-
egy for making reinforcement learning practical with real
robots. Successful sim-to-real transfer systems have difficulty
producing policies which generalize across tasks, despite train-
ing for thousands of hours equivalent real robot time. To
address this shortcoming, we present a novel approach to
efficiently learning new robotic skills directly on a real robot,
based on model-predictive control (MPC) and an algorithm for
learning task representations. In short, we show how to reuse
the simulation from the pre-training step of sim-to-real methods
as a tool for foresight, allowing the sim-to-real policy adapt to
unseen tasks. Rather than end-to-end learning policies for single
tasks and attempting to transfer them, we first use simulation
to simultaneously learn (1) a continuous parameterization (i.e. a
skill embedding or latent) of task-appropriate primitive skills,
and (2) a single policy for these skills which is conditioned
on this representation. We then directly transfer our multi-
skill policy to a real robot, and actuate the robot by choosing
sequences of skill latents which actuate the policy, with each
latent corresponding to a pre-learned primitive skill controller.
We complete unseen tasks by choosing new sequences of skill
latents to control the robot using MPC, where our MPC model
is composed of the pre-trained skill policy executed in the
simulation environment, run in parallel with the real robot.
We discuss the background and principles of our method, detail
its practical implementation, and evaluate its performance by
using our method to train a real Sawyer Robot to achieve
motion tasks such as drawing and block pushing.

I. INTRODUCTION

Reinforcement learning algorithms have been proven to be
effective to learn complex skills in simulation environments
in [1], [2] and [3]. However, practical robotic reinforcement
learning for complex motion skills remains a challenging
and unsolved problem, due to the high number of samples
needed to train most algorithms and the expense of obtaining
those samples from real robots. Most existing approaches
to robotic reinforcement learning either fail to generalize
between different tasks and among variations of single
tasks, or only generalize by requiring collecting impractical
amounts of real robot experience. With recent advancements
in robotic simulation, and the widespread availability of
large computational resources, a popular family of methods
seeking to address this challenge has emerged, known as
“sim-to-real” methods. These methods seek to offload most
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Fig. 1. The Sawyer robot performing the reaching task in simulation (left)
and real world (right)

Fig. 2. The Sawyer robot performing the box pushing task in simulation
(left) and real world (right)

training time from real robots to offline simulations, which
are trivially parallelizable and much cheaper to operate. Our
method combines this “sim-to-real” schema with represen-
tation learning and model-predictive control (MPC) to make
transfer more robust, and to significantly decrease the number
of simulation samples needed to train policies which achieve
families of related tasks.

The key insight behind our method is that the simulation
used in the pre-training step of a simulation-to-real method
can also be used online as a tool for foresight. It allows
us to predict the behavior of a known policy on an unseen
task. When combined with a latent-conditioned policy, where
the latent actuates variations of useful policy behavior (e.g.
skills), this simulation-as-foresight tool allows our method
to use what the robot has already learned to do (e.g. the
pre-trained policy) to bootstrap online policies for tasks it
has never seen before. That is, given a latent space of useful
behaviors, and a simulation which predicts the rewards for
those behaviors on a new task, we can reduce the adaptation
problem to intelligently choosing a sequence of latent skills



which maximize rewards for the new task.

II. BACKGROUND

Most simulation-to-real approaches so far have focused
on addressing the “reality gap” problem. The reality gap
problem is the domain shift performance loss induced by dif-
ferences in dynamics and perception between the simulation
(policy training) and real (policy execution) environments.
Training a policy only in a flawed simulation generally yields
control behavior which is not adaptable to even small varia-
tions in the environment dynamics. Furthermore, simulating
the physics behind many practical robotic problems (e.g.
sliding friction and contact forces) is an open problem in
applied mathematics, meaning it is not possible to solve a
completely accurate simulation for many important robotic
tasks [4]. Rather than attempt to create an explicit alignment
between simulation and real [5], or randomize our simulation
training to a sufficient degree to learn a policy which
generalizes to nearby dynamics [6], our method seeks to
learn a sufficient policy in simulation, and adapt it quickly
to the real world online during real robot execution.

Our proposed approach is based on four key components:
reinforcement learning with policy gradients (RL) [7], vari-
ational inference [8], model-predictive control (MPC), and
physics simulation. We use variational inference to learn a
low-dimensional latent space of skills which are useful for
tasks, and RL to simultaneously learn single policy which is
conditioned on these latent skills. The precise long-horizon
behavior of the policy for a given latent skill is difficult to
predict, so we use MPC and an online simulation to evaluate
latent skill plans in the in simulation before executing them
on the real robot.

III. RELATED WORK

Learning skill representations to aid in generalization
has been proposed in works old and new. Previous works
proposed frameworks such as Associative Skill Memories [9]
and probabilistic movement primitives [10] to acquire a
set of reusable skills. Our approach is built upon [11],
which learns a embedding space of skills with reinforcement
learning and variational inference, and [12] which shows
that these learned skills are transferable and composable on
real robots. While [12] noted that predicting the behavior of
latent skills is an obstacle to using this method, our approach
addresses the problem by using model-predictive control to
successfully complete unseen tasks with no fine-tuning on the
real robot. Exploration is a key problem in robot learning,
and our method uses latent skill representations to address
this problem. Using learned latent spaces to make exploration
more tractable is also studied in [13] and [14]. Our method
exploits a latent space for task-oriented exploration: it uses
model-predictive control and simulation to choose latent
skills which are locally-optimal for completing unseen tasks,
then executes those latent skills on the real robot.

Using reinforcement learning with model-predictive con-
trol has been explored previously. Kamthe et al. [15] pro-
posed using MPC to increase the data efficiency of reinforce-

ment algorithms by training probabilistic transition models
for planning. In our work, we take a different approach by
exploiting our learned latent space and simulation directly to
find policies for novel tasks online, rather than learning and
then solving a model.

Simulation-to-real transfer learning approaches include
randomizing the dynamic parameters of the simulation [6],
and varying the visual appearance of the environment [16],
both of which scale linearly or quadratically the amount
of computation needed to learn a transfer policy. Other
strategies, such as that of Barrett et al. [17] reuse models
trained in simulation to make sim-to-real transfer more
efficient, similar to our method, however this work requires
an explicit pre-defined mapping between seen and unseen
tasks. Saemundson et al. [18] use meta-learning and learned
representations to generalize from pre-trained seen tasks to
unseen tasks, however their approach requires that the unseen
tasks be very similar to the pre-trained tasks, and is few-shot
rather than zero-shot. Our method is zero-shot with respect
to real environment samples, and can be used to learn unseen
tasks which are significantly out-of-distribution, as well as
for composing learned skills in the time domain to achieve
unseen tasks which are more complex than the underlying
pre-trained task set.

Our work is closely related to simultaneous work per-
formed by Co-Reyes et al. [19]. Whereas our method learns
an explicit skill representations using pre-chosen skills iden-
tified by a known ID, [19] learn an implicit skill represen-
tation by clustering trajectories of states and rewards in a
latent space. Furthermore, we focus on MPC-based planning
in the latent space to achieve robotic tasks learned online
with a real robot, while their analysis focuses on the machine
learning behind this family of methods and uses simulation
experiments.

IV. METHOD

A. Skill Embedding Algorithm

In our multi-task RL setting, we pre-define a set of low-
level skills with IDs T = {1, . . . , N}, and accompanying,
per-skill reward functions rt(s, a).

In parallel with learning the joint low-level skill policy
πθ as in conventional RL, we learn an embedding function
pφ which parameterizes the low-level skill library using a
latent variable z. Note that the true skill identity t is hidden
from the policy behind the embedding function pφ. Rather
than reveal the skill ID to the policy, once per rollout we
feed the skill ID t, encoded as s one-hot vector, through the
stochastic embedding function pφ to produce a latent vector
z. We feed this same value of z to the policy for the entire
rollout, so that all steps in a trajectory are correlated with
the same value of z.

L(θ, φ, ψ) =

max
π

Eπ(a,z|s,t)
t∈T

[ ∞∑
i=0

γir̂(si, ai, z, t)

∣∣∣∣si+1

]
(1)



where
r̂(si, ai, z, t) = α1Et∈T [H (pφ(z|t))] + α2 log qψ(z|sHi )

+ α3H (πθ(ai|si, z)) + rt(si, ai)

To aid in learning the embedding function, we learn an
inference function qψ which, given a state-only trajectory
window sHi of length H , predicts the latent vector z which
was fed to the low-level skill policy when it produced that
trajectory. This allows us to define an augmented reward
which encourages the policy to produce distinct trajectories
for different latent vectors. We learn qψ in parallel with the
policy and embedding functions, as shown in Eq. 1.

We add a policy entropy bonus H (πθ(ai|si, z)), which
ensures that the policy does not collapse to a single solution
for each skill. For a detailed derivation, refer to [11].

B. Skill Embedding Criterion

In order for the learned latent space to be useful for
completing unseen tasks, we seek to constrain the embedding
distribution to satisfy two important properties:

1) High entropy: Each task should induce a distribution
over latent vectors which is wide as possible, corre-
sponding to many variations of a single skill.

2) Identifiability: Given an arbitrary trajectory window,
the inference network should be able to predict with
high confidence the latent vector fed to the policy to
produce that trajectory.

When applied together, these properties ensure that dur-
ing training the policy is trained to encode high-reward
controllers for many parameterizations of a skill (high-
entropy), while simultaneously ensuring that each of these
latent parameterizations corresponds to a distinct variation
of that skill. This dual constraint is the key for using model
predictive control or other composing methods in the latent
space as discussed in Sec. IV-C.

Fig. 3. Skill Embedding Algorithm and MPC

We train the policy and embedding networks using Proxi-
mal Policy Optimization [20], though our method may be
used by any parametric reinforcement learning algorithm.
We use the MuJoCo physics engine [21] to implement our
Sawyer robot simulation environments. We represent the pol-
icy, embedding, and inference functions using multivariate

Gaussian distributions whose mean and diagonal covariance
are parameterized by the output of a multi-layer perceptron.
The policy and embedding distributions are jointly optimized
by the reinforcement learning algorithm, while we train the
inference distribution using supervised learning and a simple
cross-entropy loss.

C. Using Model Predictive Control for Zero-Shot Adaptation

To achieve unseen tasks on a real robot with no addi-
tional training, we freeze the multi-skill policy learned in
Sec. IV-A, and use a new algorithm which we refer to
as a “composer.” The composer achieves unseen tasks by
choosing new sequences of latent skill vectors to feed to
the frozen skill policy. Exploring in this smaller space is
faster and more sample-efficient, because it encodes high-
level properties of tasks and their relations. Each skill latent
induces a different pre-learned behavior, and our method
reduces the adaptation problem to choosing sequences of
these pre-learned behaviors–continuously parameterized by
the skill embedding–to achieve new tasks.

Note that we use the simulation itself to evaluate the future
outcome of the next action. For each step, we set the state of
the simulation environment to the observed state of the real
environment. This equips our robot with with the ability to
predict the behavior of different skill latents. Since our robot
is trained in a simulation-to-real framework, we can reuse the
simulation from the pre-training step as a tool for foresight
when adapting to unseen tasks. This allow us to select a
latent skill online which is locally-optimal for a task, even
if that task was seen not during training. We show that this
scheme allows us to perform zero-shot task execution and
composition for families of related tasks. This is in contrast
to existing methods, which have mostly focused on direct
alignment between simulation and real, or data augmentation
to generalize the policy using brute force. Despite much work
on simulation-to-real methods, neither of these approaches
has demonstrated the ability to provide the adaptation ability
needed for general-purpose robots in the real world. We
believe our method provides a third path towards simulation-
to-real adaptation that warrants exploration, as a higher-level
complement to these effective-but-limited existing low-level
approaches.

We denote the new task tnew corresponding to reward
function rnew, the real environment in which we attempt this
task R(s′|s, a), and the RL discount factor γ. We use the
simulation environment S(∫ ′|∫ ,a), frozen skill embedding
pφ(z|t), and latent-conditioned skill policy πθ(a|s, z), all
trained in Sec. IV-A, to apply model-predictive control in
the latent space as follows (Algorithm 1).

We first sample k candidate latents Z = {z1, . . . , zk}
according to p(z) = Et∼p(t)pφ(z|t). We observe the state
sreal of real environment R.

For each candidate latent zi, we set the initial state of
the simulation S to sreal. For a horizon of T time steps, we
sample the frozen policy πθ, conditioned on the candidate
latent aj∈T ∼ πθ(aj |sj , zi), and execute the actions aj
the simulation environment S , yielding and total discounted



Fig. 4. Using model-predictive control with embedding functions and
multi-task policy

reward Rnew
i =

∑T
j=0 γ

jrnew(sj , aj) for each candidate
latent. We then choose the candidate latent acquiring the
highest reward z∗ = argmaxiR

new
i , and use it to condition

and sample the frozen policy al∈N ∼ πθ(aj |sj , z∗) to control
the real environment R for a horizon of N < T time steps.

We repeat this MPC process to choose and execute new
latents in sequence, until the task has been achieved.

Algorithm 1 MPC in Skill Latent Space
Require: A latent-conditioned policy πθ(a|s, z), a skill em-

bedding distribution pφ(z|t), a skill distribution prior p(t),
a simulation environment S(s′|s, a), a real environment
R(s′|s, a), a new task tnew with associated reward function
rnew(s, a), an RL discount factor γ, an MPC horizon T ,
and a real environment horizon N .
while tnew is not complete do

Sample Z = {z1, . . . , zk} ∼ p(z) = Et∼p(t)pφ(z|t)
Observe sreal from R
for zi ∈ Z do

Set inital state of S to sreal
for j ∈ {1, . . . , T} do

Sample aj ∼ πθ(aj |sj , zi)
Execute simulation sj+1 = S(sj , aj)

end for
Calculate Rnew

i =
∑T
j=0 γ

jrnew(sj , aj)
end for
Choose z∗ = argmaxzi R

new
i

for l ∈ {1, . . . , N} do
Sample al ∼ πθ(al|sl, z∗)
Execute real environment sl+1 = R(sl, aj)

end for
end while

The choice of MPC horizon T has a significant effect on
the performance of our approach. Since our latent variable
encodes a skill which only partially completes the task,
executing a single skill for too long unnecessarily penalizes a
locally-useful skill for not being globally optimal. Hence, we
set the MPC horizon T to not more than twice the number
of steps that a latent is actuated in the real environment N .

V. EXPERIMENTS

We evaluate our approach by completing two sequencing
tasks on a Sawyer robot: drawing a sequence of points
and pushing a box along a sequential path. For each of
the experiments, the robot must complete an overall task
by sequencing skills learned during the embedding learning
process. Sequencing skills poses a challenge to conventional
RL algorithms due to the sparsity of rewards in sequenc-
ing tasks [22]. Because the agent only receives a reward
for completing several correct complex actions in a row,
exploration under these sequencing tasks is very difficult for
conventional RL algorithms. By reusing the skills we have
consolidated in the embedding space, we show a high-level
controller can effectively compose these skills in order to
achieve such difficult sequencing tasks.

A. Sawyer: Drawing a Sequence of Points

In this experiment, we ask the Sawyer Robot to move
its end-effector to a sequence of points in 3D space. We
first learn the low level policy that receives an observation
with the robot’s seven joint angles as well as the Cartesian
position of the robot’s gripper, and output incremental joint
positions (up to 0.04 rads) as actions. We use the Euclidean
distance between the gripper position and the current target
is used as the cost function. We trained the policy and the
embedding network on eight goal positions in simulation,
forming a 3D rectoid enclosing the workspace. Then, we
use the model-predictive control to choose a sequence latent
vector which allows the robot to draw an unseen shape. For
both simulation and real robot experiments, we attempted
two unseen tasks: drawing a rectangle in 3D space (Figs. 5
and 7) and drawing a triangle in 3D space (Figs. 6 and 8).
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Fig. 5. Gripper position plots for the unseen rectangle-drawing experiment
in simulation. In this experiment, the unseen task is drawing a rectangle in
3D space.
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Fig. 6. Gripper position plots in unseen triangle-drawing experiment in
simulation. In this experiment, the unseen task is to move the gripper to
draw a triangle.
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Fig. 7. Gripper position plots for the triangle-drawing experiment on the
real robot. In this experiment, the unseen task is to draw a triangle.
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Fig. 8. Gripper position plots in unseen triangle-drawing experiment on
the real robot. In this experiment, the unseen task it to move the gripper to
draw a triangle.

B. Sawyer: Pushing the Box through a Sequence of Way-
points

In this experiment, we test our approach with a task that
requires contact between the Sawyer Robot and an object.
We ask the robot to push a box along a sequence of points in
the table plane. We choose the Euclidean distance between
the position of the box and the current target position as
the reward function. The policy receives a state observation
with the relative position vector between the robot’s gripper
and the box’s centroid and outputs incremental gripper
movements (up to ±0.03 cm) as actions.

We first pre-train a policy to push the box to four goal
locations relative to its starting position in simulation. We
trained the low-level multi-task policy with four tasks in
simulation: 20 cm up, down, left, and right of the box starting
position. We then use the model-predictive control to choose
a latent vectors and feed it with the state observation to
frozen multi-task policy which controls the robot.

For both simulation and real robot experiments, we use the
simulation as a model of the environments. In the simulation
experiments, we use model-predictive controller to push the
box to three points. In the real robot experiments, we ask
the Sawyer Robot to complete two unseen tasks: pushing
up-then-left and pushing left-then-down.
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Fig. 9. Plot of block positions and gripper positions in simulation
experiments. In the first experiment (left), the robot pushes the box to the
right, up and then left. In the second experiment (right), the robot pushes
the box to the left, then up, and then back to its starting position.
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Fig. 10. Plot of block positions and gripper positions in real robot
experiments. In experiment I (left), the robot pushes the box to the left,
and then down. In experiment II (right), the robot push the box to the up,
and then left.

VI. RESULTS

A. Sawyer Drawing

In the unseen drawing experiments, we sampled k = 15
vectors from the skill latent distribution, and for each of them
performed an MPC optimization with a horizon of T = 4
steps. We then execute the latent with highest reward for
N = 2 steps on the target robot. In simulation experiments,
the Sawyer Robot successfully draw a rectangle with by
sequencing 54 latents (Fig. 2) and drew by sequencing a
triangle with 56 latents (Fig. 3). In the real robot experi-
ments, the Sawyer Robot successfully completed the unseen
rectangle-drawing task by choosing 62 latents (Fig. 4) in
2 minutes of real time and completed the unseen triangle-
drawing task by choosing 53 latents (Fig. 5) in less than 2
minutes.

B. Sawyer Pusher Sequencing

In the pusher sequencing experiments, we sample k =
50 vectors from the latent distribution. We use an MPC
optimization with a simulation horizon of T = 30 steps, and
execute each chosen latent in the environment for N = 10
steps. In simulation experiments, the robot completed the
unseen up-left task less than 30 seconds of equivalent real
time and the unseen right-up-left task less than 40 seconds
of equivalent real time. In the real robot experiments, the



robot successfully completed the unseen left-down task by
choosing 3 latents over approximately 1 minute of real time,
and the unseen push up-left task by choosing 8 latents in
about 1.5 minutes of real time.

C. Analysis

These experiment results show that our learned skills are
composable to complete the new task. In comparison with
performing a search as done in [12], our approach is faster
in wall clock time because we perform the model prediction
in simulation instead of on the real robot. Note that our
approach can utilize the continuous space of latents, whereas
previous search methods only use an artificial discretization
of the continuous latent space. In the unseen box-pushing real
robot experiment (Fig. 7, Right), the Sawyer robot pushes the
box towards the bottom-right right of the workspace to fix
an error it made earlier in the task. This intelligent reactive
behavior was never explicitly trained during the pre-training
in simulation process. This shows that by sampling from
our latent space, the model-predictive controller successfully
selects a skill that is not pre-defined during training process.

VII. CONCLUSION

In this work, we combine task representation learning
simulation-to-real training, and model-predictive control to
efficiently acquire policies for unseen tasks with no addi-
tional training. Our experiments show that applying model
predictive control to these learned skill representations can
be a very efficient method for online learning of tasks. The
tasks we demonstrated are more complex than the underlying
pre-trained skills used to achieve them, and the behaviors
exhibited by our robot while executing unseen tasks were
more adaptive than demanded by the simple reward func-
tions us. Our method provides a partial escape from the
reality gap problem in simulation-to-real methods, by mixing
simulation-based long-range foresight with locally-correct
online behavior.

For future work, we plan to apply our model-predictive
controller as an exploration strategy to learn a composer
policy that uses the latent space as action space. We look
forward to efficiently learning a policy on real robots with
guided exploration in our latent space.
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