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Abstract— Planning smooth trajectories is important for the
safe, efficient and comfortable operation of mobile robots, such
as wheeled robots moving in crowded environments or cars
moving at high speed. Asymptotically optimal sampling-based
motion planners can be used to generate such trajectories.
However, to achieve the necessary efficiency for the real-
time operation of robots, one often uses their initial feasible
trajectories or the trajectories of non-optimal motion planners
instead, typically after a post-smoothing step. We propose
a gradient-informed post-smoothing algorithm, called GRIPS,
that deforms given trajectories by locally optimizing the place-
ment of vertices while satisfying the system’s kinodynamic
constraints. We show experimentally that GRIPS typically
produces trajectories of significantly smaller length and higher
smoothness than several existing post-smoothing algorithms.

I. INTRODUCTION

The generation of smooth robot motion is important in
robotics, such as to achieve legible navigation in crowded
environments [1], [2] and comfortable robot and car mo-
tion that respects kinodynamic constraints [3]. In recent
years, several asymptotically optimal sampling-based motion
planners have been introduced (e.g., RRT∗ [4], PRM∗ [4],
RRT# [5], FMT∗ [6] and SORRT∗ [7]) which, given enough
time, yield high-quality (that is, minimum-cost) paths. A
de facto standard technique to generate smooth paths in less
time than asymptotically optimal motion planners is the com-
bination of a sampling-based or discrete motion planner (e.g.,
Theta∗ [8] and A* [9]) with a post-smoothing algorithm [10],
[11], [12] that improves the feasible path returned by the
motion planner. Common smoothing operations utilized by
such algorithms are short-cutting [10], removal of redundant
vertices or solving of an optimization problem initialized
with the feasible path [13], [14], [15].

Following this line of work, we introduce a new
path-smoothing technique called Gradient-Informed Path
Smoothing (GRIPS). Unlike previous techniques, GRIPS
combines the advantages of gradient-based optimization and
short-cutting. Instead of only skipping redundant vertices on
the feasible path, GRIPS also deforms its shape by locally
optimizing the placement of the vertices. After this gradient-
based path-deformation phase, GRIPS prunes the path in
a cost-aware short-cutting phase that ensures that the path
remains sufficiently far away from obstacles (see Fig. 1)
while adhering to the kinodynamics of the system.
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Fig. 1: An example path generated by Theta∗ with Reeds-
Shepp steering using Gradient-Informed Path Smoothing
(GRIPS) (solid line). GRIPS generates a shorter and
smoother path than the initial path (dashed line) by dynam-
ically deforming it over an obstacle distance field (red and
blue represent closest and furthest distances, respectively).

We evaluate GRIPS experimentally on paths provided
by different motion planners (RRT [16], PRM [17], RRT∗,
RRT# and Theta∗) for kinodynamic systems realized by
different steer functions (POSQ [18], Reeds-Shepp [19],
G1 clothoids [20] and Dubins [21]). Our results indicate that,
on average, GRIPS generates shorter (smaller arc length)
and smoother (lower maximum curvature) paths than sev-
eral state-of-the-art path-smoothing techniques, while finding
feasible paths in more cases and being as fast as them.

This paper is structured as follows: We first review related
work in Sec. II and then describe GRIPS in Sec. III. Finally,
we show our experiments and results in Sec. IV and Sec. V,
respectively.

II. RELATED WORK

Several approaches have been introduced in recent years
for improving the quality of feasible paths generated by
motion planners.

Hsu et al. [10] describe a short-cutting technique that
removes redundant motions between nearby vertices on
the given path by repeatedly selecting two non-consecutive
vertices on the path and trying to connect them directly via
a steer function. Geraerts et al. [11] describe an extension
of this technique that repeatedly applies a shortcut to a
randomly chosen system dimension. GRIPS, instead of only
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Fig. 2: Post-smoothing of a hand-crafted path (black) with
GRIPS (blue solid line) and other path-smoothing techniques
(dashed lines). Red circles with outgoing red lines indicate
the SE(2) vertices on the given path with their respective
yaw angles.

removing redundant vertices on the path, also deforms its
shape by locally optimizing the placement of the vertices,
taking nearby obstacles and the kinodynamic constraints of
the system into account to generate shorter and smoother
paths that remain sufficiently far away from obstacles.

Raveh et al. [22] describe a hybridization technique that
operates on several given paths instead of a single one. It
first finds feasible connections between the paths and then
identifies a new (hybrid) path of high quality via classical
search on the graph given by all paths and their connections.
Luna et al. [12] describe a variant of this hybridization
technique that converts a non-optimal motion planner to one
with any-time properties. Their method, when given more
planning time, first uses the motion planner to generate
an additional path and then alternates between short-cutting
and hybridization of the best k previously generated paths.
GRIPS, on the other hand, does not require a motion planner
to be called repeatedly. It directly operates on a single given
path to run fast.

Yang et al. [23] describe a spline-based interpolation
technique that repeatedly fits a G1- and G2-continuous cubic
Bézier curve through a sequence of vertices on the given path
and then replaces the corresponding path segment with the
curve if the curve does not collide with obstacles. GRIPS, on
the other hand, takes nearby obstacles into account to ensure
that the path remains sufficiently far away from obstacles.

Several motion-optimization techniques optimize the
shape of the given path to improve its quality with respect
to a given cost function that typically includes the length
and smoothness of the path. For example, Quinlan et al.
[15] optimize the shape of the path with gradient descent
based on an elastic force in the configuration space and
tend to generate paths that are very close to obstacles.
Ratliff et al. [13] optimize the shape of the path with
covariant gradient descent. Their CHOMP technique works
well as local optimizer for holonomic systems but does not

handle the inequality constraints common for nonholonomic
systems. Schulman et al. [14] optimize the shape of the path
with sequential quadratic programming after linearizing the
dynamics of the system. The latter two motion-optimization
techniques use a term in the cost function to penalize
collisions with obstacles. However, they may not find feasible
paths in very cluttered environments. Furthermore, they work
only on paths whose number of vertices is fixed. GRIPS, on
the other hand, also inserts, removes and moves vertices on
the path to generate shorter and smoother paths that remain
sufficiently far away from obstacles even in very cluttered
environments.

III. OUR APPROACH

We first present our terminology and notation in Sec. III-A
and then describe GRIPS in Sec. III-B.

A. Terminology and Notation

For wheeled mobile robots, a path σ is defined
as a sequence of SE(2)-vertices connecting a
given start state xs to a given goal state xg ,
σ={x0=xs,x2, . . . ,xN−2,xN−1=xg} via N interpolated
states. During their search in the configuration space X ,
motion planners try to connect the start state xs∈X and
goal state xg∈X by finding several intermediary states
that lead to the goal, while ensuring the geometric and
kinematic feasibility of these connections. States can be
randomly sampled (as done by sampling-based motion
planners [4], [17], [16]) or generated from deterministic
tessellations of the configuration space (as done by grid-
and lattice-based searches [8], [9]). To ensure kinodynamic
feasibility, the connection of two adjacent states x and x′

is often formulated as a two-point boundary value problem
(2P-BVP), which is commonly solved by a steer function
s(x,x′). A steer function returns a sequence of vertices
(path or trajectory) σ′ as numerical solution to the 2P-BVP.
The environment is defined by a rectangular grid consisting
of square-shaped cells with 1m side length. A grid cell
can either be occupied or free and is indexed by a pair
of coordinates x, y denoting the horizontal and vertical
position on the grid, respectively.

B. Gradient-Informed Path Smoothing

The objective of a post-smoothing algorithm is to improve
the quality of a given feasible path σ generated by a motion
planner. GRIPS is inspired by the split-and-merge algorithm
presented in [24], which linearly approximates curves by
subdividing line segments at vertices of higher error and
subsequently merging adjacent segments while maintaining
a defined error bound. Given a path σ and a steer function
s, GRIPS (Alg. 1) works in two similar stages. In the first
phase, it deforms the path by moving and inserting vertices
(Alg. 2) such that the distance from obstacles is increased
and enough vertices are sampled in areas closer to obstacles.
In the second phase, it removes vertices from the path using
a cost-aware short-cutting mechanism (Alg. 3).



1) Gradient-Based Path Deformation (Alg. 2): In the first
phase, GRIPS moves and inserts vertices via gradient descent
on the obstacle distance field D (see Fig. 1 for an example)
where the obstacle distance is computed as follows:

D[p] = min
o∈O
||o− p||2,

where p is the continuous vertex position (assumed to be two-
dimensional in this work), and O is the set of coordinates
of occupied grid cells. Once an array of grid cell distances
to the static obstacles has been precomputed, D[p] can be
determined in constant time by linearly interpolating between
the grid cells adjacent to p.

The gradient ∇D of the distance field is approximated as
follows:

∇D[p] =


D[p.x−ε, p.y]−D[p.x+ε, p.y]

2ε

D[p.x, p.y−ε]−D[p.x, p.y+ε]

2ε


for sufficiently small ε > 0.

Gradient descent moves the vertices p by −η∇D[p]/D[p]
where η is the step size (η0 being the initial value) which is
multiplied in every gradient-descent round by discount factor
γ ∈ (0, 1]. −η∇D[p] defines the direction on the distance
field pointing away from closest obstacles. Dividing this di-
rection by D[p] alters the magnitude of the gradient-descent
step to move vertices which are close to obstacles away from
them by a larger degree compared to vertices that are further
away from obstacles. The number of gradient-descent rounds
K in combination with η0 and γ further affects how far the
vertices will be moved away from obstacles. During each
gradient-descent round, a new vertex is inserted at positions
of the path which are close to obstacles. If many vertices are
placed close to each other, interpolating the path becomes
increasingly more expensive due to the high number of 2P-
BVP instances to be solved. Therefore, a minimum distance
dmin between consecutive vertices on the path is maintained.
The resulting path provides the subsequent cost-aware short-
cutting phase (Alg. 3) with more opportunity to prune the
path as vertices further away from obstacles are more likely
to be directly connectable by a steer function compared to
vertices which are ”trapped” near obstacles.

2) Cost-Aware Path Short-Cutting (Alg. 3): In the second
phase, a short-cutting technique is used to remove vertices
that cause unnecessary turns and thus high arc lengths and
curvatures. It first identifies vertices which cannot be skipped
by directly steering from their predecessors to their succes-
sors. Then it constructs, for every pair of such consecutive
irremovable vertices σ[a] and σ[b], a directed acyclic graph
whose vertices σ[a : b] are the (possibly removable) vertices
of the path segment and whose edges are collision-free
steering connections between these vertices, as shown in
Fig. 3b. The best path σ∗ab from vertex σ[a] to vertex σ[b]
is found and all vertices of path segment σ[a :b] which are
not on path σ∗ab are removed from path σ. The best path is
the one with the shortest arc length – using the more time-
consuming evaluation of maximum curvature as cost function

has shown no improvement in our experiments. The cost-
aware short-cutting phase iterates over the whole path until
no more vertices can be removed or the maximum number
of pruning rounds L has been reached.

During the gradient-based path deformation and cost-
aware short-cutting phases, the headings of the SE(2) ver-
tices are updated (in UPDATEANGLES(σ)). This function
computes, for every vertex σ[i], the heading of the incom-
ing line from predecessor σ[i−1] and the heading of the
outgoing line to successor σ[i+1]. The heading of σ[i] is
set to the average of the headings of σ[i−1] and σ[i+1]
if this change does not cause any collisions in the steering,
i.e. s(σ[i−1], σ[i]) and s(σ[i], σ[i+1]) do not collide with
obstacles.

Algorithm 1 GRIPS
function GRIPS(σ)

σ ← MOVEANDINSERTVERTICES(σ)
σ ← PRUNEVERTICES(σ)
return σ

Algorithm 2 Gradient-Based Path Deformation Phase
function MOVEANDINSERTVERTICES(σ)

η ← η0
for k = 1 . . .K do

. Gradient descent on obstacle distance field
for i = 1 . . . |σ|−2 do

σ[i]← σ[i]− η∇D[σ[i]]

D[σ[i]]

η ← γη
σ ← UPDATEANGLES(σ)
. Insert vertices at local minima in distance field
σ′ ← ∅
for i ∈ 0 . . . |σ|−2 do

σ′ ← APPEND(σ′, σ[i])
for q ∈ s(σ[i], σ[i+1]) do

if D[q] is local minimum
∧||q−σ[i]||2 ≥ dmin

∧||q−σ[i+1]||2 ≥ dmin then
σ′ ← APPEND(σ′, q)

σ′ ← APPEND(σ′, σ[|σ|−1])
σ ← σ′

σ ← UPDATEANGLES(σ)

return σ

IV. EXPERIMENTS

In this section, we introduce a set of experiments to
evaluate GRIPS1 in terms of efficiency and quality of the
smoothing process. We compare GRIPS to four other base-
lines: a B-spline interpolation technique similar to [23],
SimplifyMax, a short-cutting method [10] and Anytime Path
Shortening (AnytimePS) [12]. The SimplifyMax method

1Our implementation is available at https://github.com/eric-heiden/grips.

https://github.com/eric-heiden/grips


1© 2© 3©

(a)

𝜎 𝑎  

𝜎 𝑏  

Obstacle

𝜎 𝑥  

𝜎 𝑦  𝜎 𝑧  

(b)

Fig. 3: (a) Post-smoothing of a path generated by Theta∗ with Reeds-Shepp steering: 1© Initial path with SE(2)-vertices (black
dots), 2© gradient-based path deformation phase (Alg. 2) (gray lines with light-blue vertices indicate the path deformed during
gradient descent rounds, yellow vertices are inserted during gradient descent), 3© cost-aware short-cutting phase (Alg. 3)
(dark-red vertices are irremovable, the green line is the final path). (b) Path segment {σ[a], σ[x], σ[z], σ[y], σ[b]} avoiding an
obstacle. Vertices σ[a] and σ[b] have been determined to be irremovable s.t. they form a directed acyclic graph with vertices
σ[a], σ[x], σ[z], σ[y] and σ[b], whose edges represent collision-free steering connections between the vertices (dashed and
solid lines). For simplicity, the steer function is assumed to be a linear interpolator in this example. The red solid path
{σ[a], σ[x], σ[y], σ[b]} replaces the path segment σ[a :b] in Alg. 3.

Algorithm 3 Cost-Aware Short-Cutting Phase
function PRUNEVERTICES(σ)

for l = 1 . . . L do
N ← |σ|
u← {i ∈ {1 . . . |σ|−2} |

COLLIDES(s(σ[i−1], σ[i+1]))}
for subsequent indices a, b ∈ u do

. Build directed acyclic graph G=(V,E):
V ← {σ[j] | j ∈ {a . . . b}}
E ← {(σ[i], σ[j]) | i, j ∈ {a . . . b} ∧ i < j∧

¬COLLIDES(s(σ[i], σ[j]))}
σ[a :b]← BESTPATH(G, σ[a], σ[b])

σ ← UPDATEANGLES(σ)
if |σ| = N then

break
return σ

first collapses close vertices to remove redundancies, then
attempts to short-cut the remaining path and, in the last step,
to connect adjacent vertices with a B-spline interpolation. We
compare all algorithms by applying them to paths generated
by various motion planners (namely RRT, RRT∗, SORRT∗,
RRT#, PRM and Theta∗). All motion planners use the same
collision checker (which ensures that the distance to the
nearest obstacle is at least 0.05m) and uniform sampling
with 5% goal biasing. As soon as any path has been found
by the motion planner, the post-smoothing algorithm is
executed on this initial solution. We adopt a kinodynamic
version of the Theta∗ planner where the EXTEND-method
is realized by the steer function instead of a straight-line

connection. We use the implementations of the sampling-
based motion planners and post-smoothing algorithms from
the Open Motion Planning Library (OMPL) [25].

The behavior of GRIPS can be configured by the pa-
rameters η0 (the initial gradient-descent step size), γ (the
discount factor), K (the number of gradient-descent steps),
dmin (the minimum vertex distance) and L (the maximum
number of pruning rounds). Throughout all our experiments,
we set dmin = 3m as shorter vertex distances would cause
numerical instabilities in some steer functions and L = 100,
although the cost-aware short-cutting phase typically com-
pleted after at most five pruning rounds in our experiments.
As shown in Tab. II, we analyze the influence of η0 ∈
{0.25, 0.5, 0.75}, γ ∈ {0.5, 0.8, 0.95} and K ∈ {3, 5, 10}
on the path length l, the maximum curvature κmax, the
number of vertices N on the path, the obstacle D and the
computation time T . Larger values of η0, γ and K tend to
increase the path length and mean obstacle distance since the
gradient-based path-deformation rounds move vertices away
from obstacles.

Resulting from this empirical validation, we use η0 = 0.5,
γ = 0.8 and K = 5 throughout this paper as these parameters
provide a good trade-off between a low number of gradient-
based path deformation steps (and thus low computation
time) and a high path quality in terms of path length and
maximum curvature. Furthermore, by relying on a single
parameter configuration, we can show that GRIPS robustly
yields high performance for different motion planners with
several steer functions in different environments.



Fig. 4: Evolution of path length (top left), maximum cur-
vature (top right), number of vertices on the path (bottom
left) and mean obstacle distance (bottom right) of a path
generated by RRT# with POSQ steering in a 50×50 corridor
environment before post-smoothing (blue bar), during the
gradient-descent rounds (orange bars) and during the pruning
rounds (green bars). For comparison, the quality metrics
for B-Spline (—), SimplifyMax (- -), Shortcut (−·) and
AnytimePS (· · · ) are shown as well.

A. Environments and Metrics

As shown in Fig. 5, we use indoor-like (”corridor”)
environments of sizes 50m × 50m and 150m × 150m,
and outdoor-like (”random”) environments of size 50m ×
50m. Corridor environments feature wider rectangular areas
resembling rooms and narrower bottlenecks as small as 6m
in width representing hallways (Figs. 1, 5a and 5b), while
the occupancy of each grid cell in random environments
(Fig. 5c) independently follows a uniform distribution such
that 5% of grid cells (excluding the border) are occupied. For
each environment, the start and goal vertices were sampled
randomly among pairs of far-apart but connected points.

We evaluate the performance of the post-smoothing al-
gorithms based on several performance metrics, namely
the computation time T of planning and post-smoothing
combined, the total number of colliding paths C and quality
metrics for the resulting paths. The quality metrics are the
path length l, the maximum curvature κmax and the obstacle
distance D. The first two quality metrics directly affect the
possible traversal time of a path: it takes more time to follow
longer paths with higher curvature (yielding sharp turns)
given that robots have physical limits on their accelerations
and velocities. For each pair of motion planner and post-

smoothing algorithm, we perform runs on 20 different en-
vironments and compute the mean and standard deviation
of the performance metrics. We approximate the curvature
κt = 1/rt along a path σ by considering three consecutive
points σ′[t−1], σ′[t], σ′[t+1] on the corresponding sequence
of vertices σ′ returned by the steer function and computing
the radius rt of the circle which passes through them.

B. Nonholonomic Systems

We investigate how GRIPS and the baselines perform
on several nonholonomic systems. Each motion planner is
executed on 20 environments for each of the following steer
functions: POSQ [18], Reeds-Shepp [19], G1 clothoids [20]
and Dubins [21].

Reeds-Shepp and Dubins generate shortest paths for car-
like kinematic systems considering a constant tangential
velocity: a Dubins car is allowed to move only forward,
while a Reeds-Shepp car can also move backward. Since
Dubins and Reeds-Shepp present curvature profiles with
discontinuities, we also compare the steer functions with
G1 clothoids: G1 clothoids interpolate two given points in a
plane with assigned unit tangent vectors, generating a curve
with linearly time-varying curvature. Reeds-Shepp, Dubins
and G1 clothoids generate trajectories for the following
kinematic system (with respect to arc length l):

x′

y′

θ′

κ′

 =


cos θ
sin θ
κ
0

 d+


0
0
0
1

 dκ, (1)

where the position of the midpoint of the rear axle is denoted
by (x, y), the heading of the car by θ and the curvature by
κ. The driving direction d and the change of curvature dκ
(or sharpness) are the inputs to the system. The operator (.)′

denotes the derivative with respect to the arc length l. POSQ
generates trajectories for wheeled mobile robots modeled as
differential drive robots with the following kinematic equa-
tions in a polar-coordinate representation (time-dependency
is omitted): ρ̇α̇

φ̇

 =

cosα
sinα
ρ

0

 v +

 0
−1
−1

ω, (2)

where ρ is the Euclidean distance between the Cartesian
coordinates of the robot state (x, y, θ) and the goal state
in operation space, φ is the angle between the x-axis of the
robot reference frame {Xr} and the x-axis of the goal state
frame {Xg}, α is the angle between the y-axis of the robot
reference frame and the vector connecting the robot with the
goal position, v is the translational robot velocity and ω is
the angular robot velocity. We denote the time derivative of
a as ȧ.

V. RESULTS

Table I summarizes the performance metrics of the post-
smoothing methods averaged over the six motion planners
with four different steer functions in 20 environments per



(a) 50× 50 corridor (b) 150× 150 corridor (c) 50× 50 random

Fig. 5: Examples of the three different environments types with start states (red) and goal states (blue).

Configuration Metric Before GRIPS B-Spline SimplifyMax Shortcut AnytimePS

POSQ
50× 50
corridor

l [m] 69.15± 22.36 57.03 ± 4.14 63.89± 13.09 60.28± 7.05 66.17± 14.07 67.31± 18.87
κmax 1.80± 0.90 0.26 ± 0.23 1.40± 0.67 1.47± 0.74 1.70± 0.85 1.80± 0.96
T [s] 1.50 ± 4.70 1.51 ± 4.70 1.51 ± 4.70 1.51 ± 4.70 1.50 ± 4.70 1.50 ± 4.70
C 24 10 30 32 32 24

POSQ
150× 150

corridor

l [m] 265.89± 75.93 206.85 ± 14.76 234.56± 48.76 208.48± 11.54 252.41± 59.32 265.89± 75.93
κmax 2.35± 1.22 0.61 ± 0.92 1.37± 0.41 1.24± 0.47 2.33± 1.30 2.32± 1.25
T [s] 1.47 ± 2.61 1.49± 2.61 1.48 ± 2.61 1.48 ± 2.61 1.47 ± 2.61 1.47 ± 2.61
C 37 21 49 54 46 38

POSQ
50× 50
random

l [m] 69.58± 9.20 64.21 ± 4.30 66.47± 6.39 65.49± 5.42 68.22± 7.30 69.58± 9.20
κmax 1.65± 0.85 0.68 ± 0.24 1.03± 0.62 0.93± 0.55 1.41± 0.88 1.62± 0.86
T [s] 3.73 ± 6.41 3.74± 6.41 3.74± 6.41 3.76± 6.41 3.73 ± 6.41 3.73 ± 6.41
C 36 31 65 67 50 39

Reeds-Shepp
50× 50
corridor

l [m] 69.10± 14.39 56.78 ± 4.96 67.24± 12.51 58.68± 5.95 65.23± 10.21 63.95± 8.51
κmax 1.80± 1.83 0.12 ± 0.14 1.98± 2.11 0.75± 1.13 1.31± 1.60 1.39± 1.60
T [s] 0.05 ± 0.11 0.05 ± 0.11 0.05 ± 0.11 0.05 ± 0.11 0.05 ± 0.11 0.05 ± 0.11
C 7 0 9 5 6 5

Reeds-Shepp
150× 150

corridor

l [m] 233.36± 26.62 209.17 ± 11.47 223.85± 20.38 215.00± 13.71 223.92± 19.15 221.81± 16.95
κmax 1.05± 1.04 0.40 ± 0.70 0.99± 1.34 1.03± 1.04 1.03± 0.91 0.83± 0.88
T [s] 0.08 ± 0.15 0.09 ± 0.15 0.08 ± 0.15 0.08 ± 0.15 0.08 ± 0.15 0.08 ± 0.15
C 47 12 43 56 41 35

Reeds-Shepp
50× 50
random

l [m] 74.95± 10.79 63.89 ± 3.88 72.74± 9.38 67.53± 6.18 71.63± 7.87 70.08± 6.94
κmax 2.54± 2.01 0.63 ± 1.21 2.37± 2.30 1.88± 1.69 2.53± 1.88 1.51± 1.86
T [s] 0.11 ± 0.22 0.11 ± 0.22 0.11 ± 0.22 0.11 ± 0.22 0.11 ± 0.22 0.11 ± 0.22
C 39 28 58 57 43 46

Clothoid
50× 50
corridor

l [m] 74.42± 18.16 59.19 ± 4.08 73.35± 17.15 63.82± 5.81 69.32± 10.02 67.10± 7.54
κmax 0.64± 0.59 0.25± 0.43 0.72± 0.63 0.21 ± 0.21 0.51± 0.51 0.46± 0.40
T [s] 0.86 ± 2.45 1.18± 2.66 1.08± 2.51 0.89± 2.45 0.87 ± 2.45 0.86 ± 2.45
C 31 8 30 20 33 24

Clothoid
150× 150

corridor

l [m] 227.92± 16.51 202.23 ± 6.80 223.92± 14.13 208.27± 4.90 222.32± 16.26 222.74± 16.46
κmax 0.45± 0.43 0.17 ± 0.17 0.29± 0.08 0.34± 0.49 0.20± 0.13 0.31± 0.18
T [s] 0.41 ± 0.23 6.62± 10.03 0.60± 0.28 0.48± 0.17 0.41 ± 0.23 0.41 ± 0.23
C 108 66 99 71 93 82

Clothoid
50× 50
random

l [m] 69.21± 6.23 64.02± 3.46 68.64± 5.90 63.10 ± 1.82 67.79± 5.49 67.52± 6.13
κmax 0.30± 0.16 0.23± 0.17 0.38± 0.24 0.12 ± 0.08 0.26± 0.14 0.35± 0.20
T [s] 2.76 ± 4.74 4.89± 9.47 2.97± 4.73 2.79± 4.74 2.77 ± 4.74 2.76 ± 4.74
C 104 48 95 66 96 82

Dubins
50× 50
corridor

l [m] 68.26± 15.70 58.85 ± 5.72 79.28± 32.75 61.59± 6.57 64.05± 9.10 63.31± 7.91
κmax 0.66± 0.04 0.36 ± 0.30 0.66± 0.03 0.64± 0.06 0.66± 0.03 0.65± 0.04
T [s] 0.05 ± 0.11 0.06 ± 0.11 0.05 ± 0.11 0.05 ± 0.11 0.05 ± 0.11 0.05 ± 0.11
C 29 10 63 27 33 33

Dubins
150× 150

corridor

l [m] 223.97± 29.12 205.91 ± 10.98 220.05± 25.17 215.05± 15.89 213.06± 14.44 214.48± 14.56
κmax 0.61± 0.14 0.54± 0.21 0.65± 0.06 0.53 ± 0.21 0.56± 0.18 0.55± 0.19
T [s] 0.10 ± 0.14 0.12± 0.14 0.10 ± 0.14 0.10 ± 0.14 0.10 ± 0.14 0.10 ± 0.14
C 58 21 71 51 61 53

Dubins
50× 50
random

l [m] 68.93± 6.65 63.74 ± 2.14 69.56± 7.12 65.10± 3.28 68.09± 5.54 66.33± 4.30
κmax 0.66± 0.01 0.60 ± 0.16 0.67± 0.00 0.64± 0.09 0.67± 0.00 0.66± 0.01
T [s] 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02
C 54 39 91 45 66 62

TABLE I: Post-smoothing results averaged over the six motion planners (Sec. IV) with different steer functions in 20
randomly generated maps per environment type. Metrics are shown in the format mean ± std deviation.



Fig. 6: Visual comparison of post-smoothing results for a
path generated by RRT with Reeds-Shepp steering (black)
in a 50× 50 corridor environment.

environment type. On average, GRIPS outperforms the base-
lines in terms of path length, maximum curvature and number
of collisions, while its computation time is on par with
the baselines. In many cases, GRIPS is able to correct
paths that collide with obstacles via the gradient-based path-
deformation phase. The curvatures for Reeds-Shepp and
Dubins steering do not vary significantly because of the
fixed turning radii (3.5m and 1.5m, respectively) these steer
functions use.

Fig. 6 demonstrates that paths found by sampling-based
motion planners (such as RRT in this case) with Reeds-
Shepp steering can contain vertices at which the car would
need to move backward in order to navigate narrow passages
of the environment. All baselines retained these motions
in the example, resulting in larger traversal times of the
paths. GRIPS, on the other hand, was able to find a path
with a minimum number of turns. This example shows the
potential of combining fast motion planners with efficient
post-smoothing methods to obtain high-quality paths within
short computation times.

The scatter plots in Fig. 7 visualize the performance
metrics for different combinations of motion planners and
post-smoothing methods. Although these plots show results
generated with POSQ, similar trends were observed for the
other steer functions as well. Independent of the motion
planner which generated the initial path, GRIPS yielded the
highest quality on these metrics in most cases, as shown in
Tab. I.

Fig. 4 shows the evolution of the quality metrics over the
phases of GRIPS: before post-smoothing (blue bar), during
the gradient-descent rounds (orange bars) and during the

GRIPS Parameters Quality Metrics
η0 γ K l [m] κmax N D [m] T [ms]

0.25 0.5 3 79.62 0.86 5 2.32± 1.38 6
0.25 0.5 5 79.70 0.93 5 2.33± 1.38 9
0.25 0.5 10 79.73 0.931 5 2.33± 1.38 15
0.25 0.8 3 79.93 0.935 5 2.35± 1.37 7
0.25 0.8 5 80.30 1.21 5 2.39± 1.36 9
0.25 0.8 10 80.70 1.31 5 2.43± 1.34 15
0.25 0.95 3 80.12 1.2 5 2.37± 1.36 6
0.25 0.95 5 80.75 1.31 5 2.44± 1.34 9
0.25 0.95 10 81.84 0.598 5 2.53± 1.31 15
0.5 0.5 3 80.5 1.22 5 2.41± 1.35 6
0.5 0.5 5 80.64 1.32 5 2.43± 1.34 9
0.5 0.5 10 80.68 1.31 5 2.43± 1.34 15
0.5 0.8 3 81.02 1.21 5 2.46± 1.33 7
0.5 0.8 5 81.61 0.679 5 2.51± 1.31 9
0.5 0.8 10 82.18 0.983 5 2.55± 1.30 15
0.5 0.95 3 81.32 1 5 2.49± 1.32 6
0.5 0.95 5 82.27 1.26 5 2.56± 1.29 9
0.5 0.95 10 83.51 0.984 6 2.63± 1.29 16
0.75 0.5 3 81.34 0.984 5 2.49± 1.32 7
0.75 0.5 5 81.51 0.94 5 2.50± 1.32 9
0.75 0.5 10 81.56 0.931 5 2.50± 1.31 16
0.75 0.8 3 81.99 0.979 5 2.54± 1.30 6
0.75 0.8 5 82.64 1.28 5 2.59± 1.29 9
0.75 0.8 10 83.2 1.27 5 2.64± 1.29 16
0.75 0.95 3 82.35 1.26 5 2.57± 1.29 7
0.75 0.95 5 83.31 1.26 5 2.64± 1.29 9
0.75 0.95 10 84.39 1.29 6 2.84± 1.17 17

TABLE II: Quality metrics for GRIPS applied with various
parameter configurations on a path generated by Theta∗ with
POSQ steering in the environment depicted in Fig. 6. The
obstacle distance D is shown in the format mean ± std
deviation.

subsequent pruning rounds (green bars). As visualized by
the black lines, GRIPS outperforms the baselines in terms
of the path length and maximum curvature. Similar trends
were observed for the other combinations of motion planners,
steer functions and environment types. The gradient-descent
rounds tend to decrease the path length and the maximum
curvature but tend to increase the number of vertices and
the mean obstacle distance. Thus, the gradient-based path
deformation phase provides the subsequent cost-aware short-
cutting phase with more opportunity to shorten the path
as more vertices are distributed in areas further away from
obstacles. The pruning rounds continue to decrease the path
length and the maximum curvature but decrease also the
number of vertices and the mean obstacle distance, until they
reach or drop below the corresponding values of the initial
path.

VI. CONCLUSION

In this paper, we introduced a new methodology for
path smoothing, called Gradient-Informed Path Smoothing
(GRIPS). Unlike previous techniques, GRIPS combines the
advantages of gradient-based optimization and short-cutting
in two phases. First, it inserts and moves vertices away from
obstacles according to the gradient of the obstacle distance
field. Then, it uses cost-aware short-cutting to remove unnec-
essary vertices. Our experiments indicate that, on average,
GRIPS generates shorter (smaller arc length) and smoother



Fig. 7: Post-smoothing quality metrics for trajectories generated by various motion planners with POSQ steering (cf. Table
I) in a 50× 50 corridor environment (Fig. 5a).

(smaller maximum curvature) paths than several state-of-the-
art path-smoothing techniques, while finding feasible paths
in more cases and being as fast as them.

In the future, we want to apply GRIPS to high-dimensional
systems (for example, manipulators) and prove its complete-
ness. We also want to use GRIPS as part of any-angle path
planners, such as Theta∗, to generate kinodynamic paths by
interleaving GRIPS with heuristic search.
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