
Scaling simulation-to-real transfer by learning
composable robot skills

Ryan Julian∗, Eric Heiden∗, Zhanpeng He, Hejia Zhang,
Stefan Schaal, Joseph J. Lim, Gaurav Sukhatme, and Karol Hausman

Abstract We present a novel solution to the problem of simulation-to-real transfer,
which builds on recent advances in robot skill decomposition. Rather than focus-
ing on minimizing the simulation-reality gap, we learn a set of diverse policies that
are parameterized in a way that makes them easily reusable. This diversity and pa-
rameterization of low-level skills allows us to find a transferable policy that is able
to use combinations and variations of different skills to solve more complex, high-
level tasks. In particular, we first use simulation to jointly learn a policy for a set
of low-level skills, and a “skill embedding” parameterization which can be used to
compose them. Later, we learn high-level policies which actuate the low-level poli-
cies via this skill embedding parameterization. The high-level policies encode how
and when to reuse the low-level skills together to achieve specific high-level tasks.
Importantly, our method learns to control a real robot in joint-space to achieve these
high-level tasks with little or no on-robot time, despite the fact that the low-level
policies may not be perfectly transferable from simulation to real, and that the low-
level skills were not trained on any examples of high-level tasks. We illustrate the
principles of our method using informative simulation experiments. We then verify
its usefulness for real robotics problems by learning, transferring, and composing
free-space and contact motion skills on a Sawyer robot using only joint-space con-
trol. We experiment with several techniques for composing pre-learned skills, and
find that our method allows us to use both learning-based approaches and efficient
search-based planning to achieve high-level tasks using only pre-learned skills.

1 Introduction
Motivation
The Constructivist hypothesis proposes that humans learn to perform new behav-
iors by using what they already know [1]. To learn new behaviors, it proposes that
humans leverage their prior experiences across behaviors, and that they also gener-
alize and compose previously-learned behaviors into new ones, rather than learning
them from scratch [2]. Whether we can make robots learn so efficiently is an open

R. Julian, E. Heiden, Z. He, H. Zhang, S. Schaal, J.J. Lim, and G. Sukhatme
University of Southern California, Los Angeles, CA,
e-mail: {rjulian, heiden, zhanpenh, hejiazha, sschaal, limjj, gaurav}@usc.edu
K. Hausman
Google Brain, Mountain View, CA, e-mail: karolhausman@google.com

∗ Equal contribution

1

2 R. Julian, E. Heiden, Z. He, H. Zhang, et al.

question. Much recent work on robot learning has focused on “deep” reinforcement
learning (RL), inspired by achievements of deep RL in continuous control [3] and
game play domains [4]. While recent attempts in deep RL for robotics are encour-
aging [5, 6, 7], performance and generality on real robots remains challenging.

A major obstacle to widespread deployment of deep RL on real robots is
data efficiency: most deep RL algorithms require millions of samples to con-
verge [8]. Learning from scratch using these algorithms on a real robot is therefore
a resource-intensive endeavor, e.g. by requiring multiple robots to learn in parallel
for weeks [9]. One promising approach is to train deep RL algorithms entirely in
faster-than-real-time simulation, and transfer the learned policies to a real robot.

Problem Statement
Our contribution is a method for exploiting hierarchy, while retaining the flexibility
and expressiveness of end-to-end RL approaches.

Consider the illustrative example of block stacking. One approach is to learn a
single monolithic policy which, given any arrangement of blocks on a table, grasps,
moves, and stacks each block to form a tower. This formulation is succinct, but re-
quires learning a single sophisticated policy. We observe that block stacking–and
many other practical robotics tasks–is easily decomposed into a few reusable prim-
itive skills (e.g. locate and grasp a block, move a grasped block over the stack lo-
cation, place a grasped block on top of a stack), and divide the problem into two
parts: learning to perform and mix the skills in general, and learning to combine
these skills into particular policies which achieve high-level tasks.

Related Work
Our approach builds on the work of Hausman et al. [10], that learns a latent space
which parameterizes a set of motion skills, and shows them to be temporally com-
posable using interpolation between coordinates in the latent space. In addition to
learning reusable skills, we present a method which learns to compose them to
achieve high-level tasks, and an approach for transferring compositions of those
skills from simulation to real robots. Similar latent-space methods have been re-
cently used for better exploration [11, 12] and hierarchical RL [13, 14, 15].

Our work is related to parameter-space meta-learning methods, which seek to
learn a single shared policy which is easily generalized to all skills in a set, but do
not address skill sequencing specifically. Similarly, unlike recurrent meta-learning
methods, which implicitly address sequencing of a family of sub-skills to achieve
goals, our method addresses generalization of single skills while providing an ex-
plicit representation of the relationship between skills. We show that explicit repre-
sentation allows us to combine our method with many algorithms for robot auton-
omy, such as optimal control, search-based planning, and manual programming, in
addition to learning-based methods. Furthermore, our method can be used to aug-
ment most existing reinforcement learning algorithms, rather than requiring the for-
mulation of an entirely new family of algorithms to achieve its goals.

Previous works proposed frameworks such as Associative Skill Memories [16]
and probabilistic movement primitives [17] to acquire a set of reusable skills. Other

Scaling simulation-to-real transfer by learning composable robot skills 3

approaches introduce particular model architectures for multitask learning, such as
Progressive Neural Networks [18] or Attention Networks [19].

Common approaches to simulation-to-real transfer learning include randomizing
the dynamic parameters of the simulation [20], and varying the visual appearance
of the environment [21]. Another approach is explicit alignment: given a mapping
of common features between the source and target domains, domain-invariant state
representations [22], or priors on the relevance of input features [23], can further
improve transferability.

Our method can leverage these techniques to improve the stability of the transfer
learning process in two ways: (1) by training transferable skills which generalize to
nearby skills from the start and (2) by intentionally learning composable parameter-
izations of those skills, to allow them to be easily combined before or after transfer.

2 Technical Approach

Fig. 1 Block diagram of
proposed architecture for
transfer learning. Shared low-
level skill components are
shown in green. The high
level task-specific component
is shown in blue.

Our work synthesizes two recent methods in deep RL–pre-training in simula-
tion and learning composable motion policies–to make deep reinforcement learning
more practical for real robots. Our strategy is to split the learning process into a
two-level hierarchy (Fig. 1), with low-level skill policies learned in simulation, and
high-level task policies learned or planned either in simulation or on the real robot,
using the imperfectly-transferred low-level skills.

Skill Embedding Learning Algorithm
In our multi-task RL setting, we pre-define a set of low-level skills with IDs T =
{1; : : : ;N}, and accompanying, per-skill reward functions rt∈T (s;a).

In parallel with learning the joint low-level skill policy pq as in conventional RL,
we learn an embedding function pf which parameterizes the low-level skill library
using a latent variable z. Note that the true skill identity t is hidden from the policy
behind the embedding function pf . Rather than reveal the skill ID to the policy, once
per rollout we feed the skill ID t, encoded as s one-hot vector, through the stochastic
embedding function pf to produce a latent vector z. We feed this same value of z to
the policy for the entire rollout, so that all steps in a trajectory are correlated with
the same value of z.

L(q ;f ;y) = max
p

Ep(a;z|s;t)
t∈T

"
∞

∑
i=0

g
ir̂(si;ai;z; t)

����si+1 ∼ p(si+1|ai;si)

#
(1)

where

4 R. Julian, E. Heiden, Z. He, H. Zhang, et al.

r̂(si;ai;z; t) = a1Et∈T
�
H{pf (z|t)}

�
+a2 logqy(z|sH

i)+a3H{pq (ai|si;z)}
+ rt(si;ai)

To aid in learning the embedding function, we learn an inference function qy

which, given a trajectory window sH
i of length H, predicts the latent vector z which

was fed to the low-level skill policy when it produced that trajectory. This allows
us to define an augmented reward which encourages the policy to produce distinct
trajectories for different latent vectors. We learn qy in parallel with the policy and
embedding functions, as shown in Eq. 1.

We also add a policy entropy bonus H{pq (ai|si;z)}, which ensures that the policy
does not collapse to a single solution for each low-level skill, and instead encodes a
variety of solutions. All the above reward augmentations arise naturally from apply-
ing a variational lower bound to an entropy-regularized, multi-task RL formulation
which uses latent variables as the task context input to the policy. For a detailed
derivation, refer to [10].

The full robot training and transfer method consists of three stages.

Stage 1: Pre-Training in Simulation while Learning Skill Embeddings
We begin by training in simulation a multi-task policy pq for all low-level skills,
and a composable parameterization of that library pf (z|t) (i.e. a skill embedding).
This stage may be performed using any deep RL algorithm, along with the modi-
fied policy architecture and loss function described above. Our implementation uses
Proximal Policy Optimization [24] and the MuJoCo physics engine [25].

The intuition behind our pre-training process is as follows. The policy obtains
an additional reward if the inference function is able to predict the latent vector
which was sampled from the embedding function at the beginning of the rollout.
This is only possible if, for every latent vector z, the policy produces a distinct
trajectory of states sH

i , so that the inference function can easily predict the source
latent vector. Adding these criteria to the RL reward encourages the policy to explore
and encode a set of diverse policies that can perform each low-level skill in various
ways, parameterized by the latent vector.

Stage 2: Learning Hierarchical Policies
In the second stage, we learn a high-level “composer” policy, represented in general
by a probability distribution rc(z|s) over the latent vector z. The composer actu-
ates the low-level policy pq (a|s;z) by choosing z at each time step to compose the
previously-learned skills. This hierarchical organization admits our novel approach
to transfer learning: by freezing the low-level skill policy and embedding functions,
and exploring only in the pre-learned latent space to acquire new tasks, we can
transfer a multitude of high-level task policies derived from the low-level skills.

This stage can be performed directly on the the real robot or in simulation. As we
show in Sec. 3, composer policies may treat the latent space as either a discrete or
continuous space, and may be found using learning, search-based planning, or even
manual sequencing and interpolation. To succeed, the composer policy must explore
the latent space of pre-learned skills, and learn to exploit the behaviors the low-level
policy exhibits when stimulated with different latent vectors. We hypothesize that
this is possible because of the richness and diversity of low-level skill variations

Scaling simulation-to-real transfer by learning composable robot skills 5

learned in simulation, which the composer policy can exploit by actuating the skill
embedding.

Stage 3: Transfer and Execution
Lastly, we transfer the low-level skill policy, embedding and high-level composer
policies to a real robot and execute the entire system to perform high-level tasks.

3 Experiments
Point Environment
Before experimenting on complex robotics problems, we evaluate our approach in
a point mass environment. Its low-dimensional state and action spaces, and high in-
terpretability, make this environment our most basic test bed. We use it for verifying
the principles of our method and tuning its hyperparameters before we deploy it to
more complex experiments. Portrayed in Fig. 2 is a multi-task instantiation of this
environment with four goals (skills).

At each time step, the policy receives as state the point’s position and chooses a
two-dimensional velocity vector as its action. The policy receives a negative reward
equal to the distance between the point and the goal position.

After 15,000 time steps, the embedding network learns a multimodal embed-
ding distribution to represent the four tasks (Fig. 2). Introducing entropy regulariza-
tion [10] to the policy alters the trajectories significantly: instead of steering to the
goal position in a straight line, the entropy-regularized policy encodes a distribution
over possible solutions. Each latent vector produces a different solution. This illus-
trates that our approach is able to learn multiple distinct solutions for the same skill,
and that those solutions are addressable using the latent vector input.

−2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Embedding dimension 0

−2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Embedding dimension 1

−4 −2 0 2 4
x

−4

−2

0

2

4

y

Trajectories

Fig. 2: Skill embedding distribution which successfully disentangles four different tasks using the
embedding function.

Sawyer Experiment: Reaching

We ask the Sawyer robot to move its gripper to within 5 cm of a goal point in
3D space. The policy receives a state observation with the robot’s seven joint an-
gles, plus the cartesian position of the robot’s gripper, and chooses incremental joint
movements (up to 0:04 rad) as actions.

We trained the low-level policy on eight goal positions in simulation, forming a
3D cuboid enclosing a volume in front of the robot (Fig. 4). The composer policies

