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Abstract— Personal robots assisting humans must perform
complex manipulation tasks that are typically difficult to
specify in traditional motion planning pipelines, where multiple
objectives must be met and the high-level context be taken into
consideration. In this paper, we introduce a state transition
model (STM) that generates joint-space trajectories by imitat-
ing motions from expert behavior. Given a few demonstrations,
we show in real robot experiments that the learned STM
can quickly generalize to unseen tasks and synthesize motions
having longer time horizons than the expert trajectories. Com-
pared to conventional motion planners, our approach enables
the robot to accomplish complex behaviors from high-level
instructions without laborious hand-engineering of planning
objectives, while being able to adapt to changing goals during
the skill execution. In conjunction with a trajectory optimizer,
our STM can construct a high-quality skeleton of a trajectory
that can be further improved in smoothness and precision.

I. INTRODUCTION

While numerous learning from demonstration (LfD) al-
gorithms [1] have been proposed for robot manipulation
skills learning, teaching robots generalizable skills is still
challenging.

In this paper, we propose a learned state transition model
(STM) that can imitate a variety of motions. We show our
proposed model has the generalizability to perform tasks with
unseen goals and plan tasks with longer time horizons than
the demonstrated tasks.

In this work, we present 1) a training procedure and
stochastic recurrent neural network architecture that can
efficiently learn robot skills from demonstrations in joint
position space, 2) real-robot experiments that demonstrate
the generalizability of our STM, 3) trajectory optimization
results attained from the STM-generated trajectory as skele-
ton.

We refer the reader to the full paper version of this
work [2] for more details.

II. PROBLEM FORMULATION

In this paper, we study the problem of learning robot
skills directly from a set of expert trajectories which are
represented by sequences of states.

Given n expert trajectories {ξ∗i }ni=0, where each trajectory
ξ∗i is a state sequence {s∗ti}

Ti
ti=0 of length Ti, the problem

is to estimate a model pθ(st+1| st) that, when unrolled for
Ti time steps from a start state s0, computes trajectories that
resemble the expert demonstrations.
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Fig. 2: Action sequence of the block-stacking task on the
Sawyer robot using the proposed state transition model
(STM) synthesizing trajectories in joint-position space.

Throughout this work, we define a state at a discrete time
step t as a vector of real numbers

st = (∆q0t ,∆q
1
t , . . . ,∆q

6
t , φt, ψt),

where ∆q = {∆qjt }6j=0 describes the changes in joint
angles relative to the previous time step, φt and ψt are
vectors that denote the task-specific input and the task
description, respectively.

III. METHODOLOGY

The STM pθ(st+1| st) is a machine learning model param-
eterized by vector θ that captures the probability distribution
over state transitions between the current state st and the
next state st+1.
A. Mixture Density Network (MDN)

Capturing the stochasticity of the state transitions is an
integral ingredient for the deployment of our model on a real
robot as future states are uncertain and high-dimensional. To
address our first requirement of representing uncertainty, we
use a mixture density network (MDN) [3] to estimate the
probability distribution of future states.

The MDN parameterizes a multivariate mixture of Gaus-
sians by estimating the distribution over the next states as a
linear combination of Gaussian kernels:

p(st+1|st) =

m∑
i=1

αi(st)gi(st+1|st),

where m is the number of Gaussians modelled by the
MDN, αi is the learned mixing coefficient and gi(st+1|st)
is the i-th Gaussian kernel of the form

g(st+1|st) =
1√

2πσi(st)
exp

{
−||st+1 − µi(st)||2

2σi(st)2

}
.



Fig. 1: Architecture of the proposed auto-conditioned recurrent mixture density network to model state transitions, unrolled
over 6 time steps, with an exemplary auto-conditioning length v = 2 and ground truth length u = 2 (see Sec. III-C).

In addition to αi, the kernel mean µi and standard devia-
tion σi are learned by the MDN.

Given the ground-truth state pair (s∗t , s
∗
t+1), we define the

MDN loss as the negative log-likelihood:

eMDN = − ln

{
m∑
i=1

αi(s
∗
t )gi(s

∗
t+1|s∗t )

}
.

B. Long Short-Term Memory (LSTM)

To learn sequences of states, we require a model with an
internal memory that allows it to remember states over long
time horizons. As shown in Fig. 1, we propose to use the
long short-term memory (LSTM) architecture that maintains
a hidden state ht. This allows the STM to make predictions
of states over long time horizons.

C. Auto-conditioning

We train the recurrent MDN with auto-conditioning [4], a
learning schedule that, for every u iterations of a sequence of
v time steps, feeds the LSTM’s output as input into the cell
computing the next state (Fig. 1). This enables the network
to correct itself from states that deviate from demonstrations.

D. STM as Initial Solution for Trajectory Optimization

To combine data-driven methods with trajectory optimiza-
tion methods, we sample from our model first to generate
a feasible initial trajectory skeleton, {q̃t}Tt=1. We want to
retain the shape of the initial trajectory, while improving its
smoothness by minimizing the objective similar to [5]:

V ({qt}Tt=1) =

T−1∑
t=1

‖qt − q̃t‖22 + γ‖qt+1 − qt‖22.

IV. EVALUATING GENERALIZABILITY

To evaluate the generalizability of our proposed method
we investigate if our model can adapt online to changing
goals. In the first experiment, as shown on the left in Fig. 3,
we let the STM synthesize a trajectory that makes the
gripper reach to the goal position (blue). Midway through
the execution, we change the goal coordinates (red) and
observe that our model is able to quickly adapt to this change,
exceeding the length of all demonstration trajectories our
model was trained on. In our second experiment (Fig. 3
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Fig. 3: Plot of the gripper position trajectory generated for
the goal changing reacher (Left) and pick-and-place (Right)
task.

right), Sawyer picks up the block from a preset location
(drawn with black solid lines). After grasping, we change the
goal location of the block (orange box) and the STM exhibit
fast adaption to these new conditions. The adapted trajectory
(green line) is close to the movement planned directly for the
new goal location (blue line).

V. CONCLUSION

In this work, we present a recurrent neural network
architecture and training procedure that enables the efficient
generation of complex joint position trajectories. Our exper-
iments have shown that our STM can generalize to unseen
tasks and plan tasks with longer time horizons than the
demonstrated tasks.
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