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I. INTRODUCTION

Employing robots in the real world to perform a large
variety of tasks remains a great challenge to current per-
ception, planning and control algorithms. Various specialized
representations, such as for mapping or localization, have
been proposed which are typically used in fixed pipelines
that fuse perception, planning and control. These approaches
are typically highly interpretable in a way that humans can
reason about the prediction uncertainty of the system, or
what additional measurements are necessary to improve the
predictions. On the other hand, such static frameworks do not
allow the robot to learn from experience or adapt to changing
task requirements.

Learning-based approaches have found great success in
domains where large amounts of labelled data is available.
Many problems in robotics, however, do not belong to such
regime where training data is easily obtainable. Instead, it is
often only possible to provide few kinesthetic demonstrations,
or rely entirely on self-supervised or reinforcement learning.
While the longstanding motivation behind such learning ap-
proaches is to enable robots to improve by learning from their
own experience, the current instantiations of state-of-the-art
reinforcement learning (RL) algorithms, even model-based,
require extensive amounts of interaction samples, such that,
in most cases, simulators are necessary to provide a risk-
free environment that runs orders of magnitude faster than
real time. With regards to accountable AI, many of these
approaches are not human-interpretable – they may achieve
high performance on certain tasks but it remains an open
research question how the training setup must be designed to
guarantee performance throughout all metrics over the tasks
of interest.

Whether control policies are learned through reinforcement
learning, or feedback control laws are optimized – in most
approaches simulators are used to validate the algorithms
before deploying them on the real system. An inherent problem
to such techniques is the disparity between the simulated
and the real world, i.e., the sim2real gap. Various methods
have been proposed to overcome this issue, such as domain
randomization and domain adaption.

In this work, we approach the problem of visuomotor con-
trol from a different angle. Instead of learning a separate model
or policy in a simulator, we use the simulator as the model that
we can use to derive controllers and estimate the state of our
system of interest. Simulators, such as physics engines, already
encode our understanding of the world through the laws of
physics and generalize well to a wide variety of application
scenarios. Most quantities, such as the geometry of the objects,

are human-interpretable and can be even verified through a
variety of specialized tools. We propose to design the simulator
from the ground up to be invertible, i.e., such that we can
estimate the simulation settings from the observations of the
real system.

II. RELATED WORK

A variety of novel deep learning architectures have been
proposed to learn intuitive physics models. Inductive bias has
been introduced through graph neural networks (e.g. [17]),
particularly interaction networks (e.g. [1]) that are able to
learn rigid and soft body dynamics. Vision-based machine
learning approaches to predict the future outcomes of the state
of the world have been proposed e.g. in [19, 10]. Nonetheless,
such models allow little room for interpretability and their
parameters are not grounded in the laws of physics.

The idea of devising invertible, analytical models has been
explored in computer graphics through differentiable rendering
systems [15, 12, 14], and in the simulation of rigid-body
dynamics [6, 4]. Various differentiable simulators have been
implemented recently in the Taichi programming language [?
]. We leverage similar ideas in our work, yet propose to
make these analytical models more amenable to gradient-based
optimization.

The approach of adapting the simulator to real world
dynamics has been less explored. While many previous works
have shown to adapt simulators to the real world using system
identification and state estimation (e.g. [11]), few have shown
adaptive model-based control schemes that actively close the
feedback loop between the real and the simulated system [3].

III. DIFFERENTIABLE SIMULATORS

In this section, we highlight our prior work on building
invertible simulators that enable system identification and
control through gradient-based optimization. To this end,
we focused our research efforts on dynamics simulation of
articulated rigid bodies [8], and sensor simulation in the
form of a physics-based rendering approach to model opti-
cal sensors [9], such as LIDAR sensors. Following [5], we
implement a physics engine for mechanisms, such as robot
arms, consisting of rigid bodies that are connected via joints.
We apply automatic differentiation which allows us to compute
gradients of any quantity involved in the simulation of complex
systems, opening avenues to state estimation, optimal control
and system design.

A. Probabilistic System Identification

To reduce the mismatch between the simulated and the real-
world behavior (sim2real gap), we can directly minimize the



`2-norm of the discrepancy between the simulated and the
measured states from the real system. Minimizing this sum-
of-squares error results in the approximation of the mean of the
observed data [2]. However, the assumption that the simulation
parameters are uniquely defined and can be estimated may
not hold for complex models, or in cases where very few
observations from the real system are available. Since we are
interested in a general estimation approach that is able to cap-
ture potential couplings between model parameters and yield
results under the presence of noisy observations, we investigate
a multi-modal probabilistic estimation method to infer physical
parameters [7]. We fit the distribution over the simulation
parameters, such as the lengths of a three-link compound
pendulum, via a Gaussian mixture model whose samples are
input to our physics engine. Finally, we minimize the error
between the simulated trajectories and the trajectories from the
real system (which we collected from VICON motion capture
measurements). The entire stochastic computation graph is
end-to-end differentiable and our experiments demonstrate
how multimodal simulation parameters can be estimated from
a few samples of the real system, while accounting for the
system identification uncertainty.

B. Adaptive MPC

Besides parameter estimation, a key benefit of differentiable
physics is its applicability to optimal control algorithms.
Trajectory optimization assumes that the dynamics model
is accurate w.r.t the real world and generates sequences of
actions that achieve optimal behavior toward a given goal
state, leading to open-loop control. Model-predictive control
(MPC) leverages trajectory optimization in a feedback loop.
After some actions are executed in the real world and sub-
sequent state samples are observed, adaptive MPC fits the
dynamics model to these samples to align it closer with the
real-world dynamics. We incorporate our dynamics model in
such receding-horizon control algorithm to achieve swing-up
motions of multi-link cartpoles in the MuJoCo simulator [18].

Within a handful of training episodes, adaptive MPC with
ILQR [13] as trajectory optimizer infers the correct model
parameters involved in the dynamics of a double cartpole,
even when the initial parameterization is very different in
the reference environment than our simulator. Leveraging
our stochastic estimation approach, in future work we plan
to design control algorithms that trade off exploration and
exploitation to systematically close the sim2real gap through
behaviors that excite part of the state space for which the
model prediction uncertainty is high, while ensuring safe
trajectories are followed.

C. Sensor modeling

So far we assumed we have access to the true state of the
system we want to control, design, or identify. In our real-
world experiments, we used a VICON motion capture system
to accurately track the weights of a compound pendulum in
order to infer its dynamical properties. However, to enable
a robot to interact autonomously with the world, we cannot

leverage such instrumentation but have to rely on sensor
measurements to estimate the underlying system state. We start
addressing the perception side of our framework by modeling
light detection and ranging (LIDAR) sensors.

Extending our simulator-as-model framework, we start from
first principles on how laser light interacts with surfaces under
various conditions [16], and implement a physically plausible
simulation that recovers various effects encountered with phys-
ical LIDAR, such as spurious measurements, reflection and
refraction. Using automatic differentiation, we compute the
derivatives of all parameters in our simulation with respect
to the simulated measurements, and apply gradient-based
optimizers to find the simulation parameters that most closely
match the true observations. Among our experiments, we
localize a LIDAR given its measurements, track a mirror,
and infer material properties and calibration settings based
on real laser scans. These tasks are typically infeasible by
classical laser scan registration algorithms since they do not
account for highly reflective or partially transparent materials.
In addition, thanks to having end-to-end differentiable compu-
tation pipelines, we are able to include neural networks into
our simulation that learn parts of the real world dynamics
for which we have no analytical or only incomplete models.
In the LIDAR simulation, we used such hybrid simulation
approach to learn the effect of the radiance on the phase
shift that the photodiode measured, and were able to recover
various effects encountered on the real sensor. Future research
is directed towards investigating how such hybrid approach
can be employed in other domains as well, potentially leading
to significant improvements in closing the sim2real gap while
only requiring a few measurement samples from the real
system, thanks to the strong inductive bias our simulation
places on the learning problem.

IV. CONCLUSION

We have presented a framework where simulators are
integrated into control and system identification pipelines.
Through new approaches to modeling of rigid body dynamics
and optical sensors, we propose invertible simulators whose
parameters have physical meaning and can be estimated
through uncertainty-aware system identification techniques.
By constantly reducing the error between simulated and
actual measurements in a feedback loop, the sim2real gap
is directly minimized. We have outlined two main future
research directions that we aim to pursue. First, we plan to
incorporate techniques to soften hard constraints inside the
simulation algorithms to make our method more amenable
to local optimization, while integrating learnable residual
models that accommodate unmodeled dynamics. Second, we
design a feedback controller that uses the predicted level of
uncertainty to explicitly trade off exploration and exploitation
while following a task objective. Through these contributions,
we aim to reach closer to the goal of a human-interpretable
model that leads to complex behavior synthesis for robots
interacting with the real world.
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