Physics-based Simulation of Continuous-Wave LIDAR for Localization, Calibration and Tracking

Eric Heiden, Ziang Liu, Ragesh K. Ramachandran, Gaurav S. Sukhatme

LIDAR simulation state of the art

CW LIDAR Principle

CW LIDARs use phase difference $\Delta \Phi$ between received and transmitted wave to measure range R

 $R = \frac{1}{4\pi} \frac{c}{f} \Delta \Phi$

Measure phase for received and transmitted wave $\Phi = \arctan \frac{\sum_{i} s_{i} \cos t_{i}}{\sum_{i} s_{i} \sin t_{i}}$

Hokuyo URG04-LX uses peculiar sampling scheme to increase resolution

Physically Based Rendering (PBR)

Model interaction between light and various surface types

Followed book by Matt Pharr, Wenzel Jakob, Greg Humphreys and accompanying implementation **pbrt** Matt Pharr, Wenzel Jakob, Greg Humphreys

PHYSICALLY BASED Rendering

From Theory to Implementation

Third Edition

6

Rendering Equation

Expresses radiance of light ray with direction ω_o reflected from point ${f p}$

$$L(\mathbf{p}, \omega_{o}) = L_{e}(\mathbf{p}, \omega_{o}) + \int_{\Omega} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

Bidirectional Scattering Distribution Function (BSDF)
BSDF 2
BSDF 2
BSDF 1
BSDF of Lambertian surface:

$$f(\mathbf{p}, \omega_{o}, \omega_{i}) = \frac{k}{\pi}$$

BSDF of Lambertian surface:

$$f(\mathbf{p}, \omega_{o}, \omega_{i}) = \frac{k}{\pi}$$

8

Advanced Surface Properties

Integration

Need to solve integral in $L_e(\mathbf{p}, \omega_o) + \int_{\Omega} f(\mathbf{p}, \omega_o, \omega_i) L_i(\mathbf{p}, \omega_i) |\cos \theta_i| d\omega_i$

Whitted Raytracing (1980)

Turner Witted

Only considers direct lighting (1 sample per interaction)

Simulation of Hokuyo URG04-LX with a single measurement

Simulated vs. Actual Distance, Simulated Radiance

Laser beam divergence in Hokuyo URG04-LX

Scene/LIDAR Parameter Estimation

Solve Nonlinear Least Squares problem for parameter vector θ given true measurements y_i

$$\underset{\theta}{\text{minimize}}(\mathcal{L} = \sum_{i} \|f_{\theta}(r_{i}) - y_{i}\|_{2}^{2})$$

(sometimes) s.t. $L \leq \theta \leq U$

Calculate derivatives
$$\frac{\partial \mathcal{L}}{\partial \theta_k}$$
 via automatic differentiation

Run Levenberg-Marquardt / L-BFGS with Wolfe line search to solve optimization problem

Experiments

LIDAR Odometry

Estimate SE(2) transform of LIDAR frame given 2 scans in cuboid environment

Tracking a mirror in the real world

- Brightness/color has significant influence on measured distance
- Estimate this influence by fitting parabola to radiance <-> phase shift relationship: $\Delta \Phi' = \Delta \Phi - (aL^2 + bL + c) \text{ for } a, b, c \in \mathbb{R}$
- Assume white/black sections are Lambertian, need to estimate k_{white} , k_{black}

Calibrating APD & Estimate Surface Properties

Particle Swarm Optimization

Localization in complex environment through population-based optimization (gradient-free)

PaGMO (Parallel Global Multiobjective Optimizer) Izzo et al. 2012

Particle Swarm Optimization: 20 generations, 9 islands à 10 individuals Shown is the best individual of each island per evolution.

Physics-based Simulation of Continuous-Wave LIDAR for Localization, Calibration and Tracking

Eric Heiden, Ziang Liu, Ragesh K. Ramachandran, Gaurav S. Sukhatme

