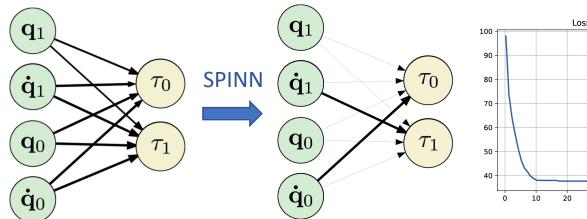
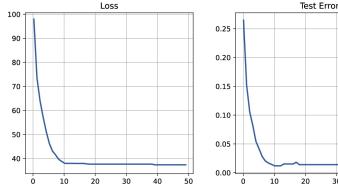

Sparse-Input Neural Network Augmentations for Differentiable Simulators


Eric Heiden, David Millard, Erwin Coumans, Gaurav S. Sukhatme


- Insert neural network connections at any place inside a differentiable rigid-body physics engine to learn unmodeled effects from data
- Simplify neural augmentations via sparse-group lasso loss £ used for training
 Sparse-Input Neural Networks (SPINN)

IBM Dataset [Asseman 2018]

Experiment: discover friction force (τ) dependence on joint velocity $\dot{\mathbf{q}}$

Hybrid Simulator

Sparse-group lasso loss: $\mathcal{L} = \sum_{t} ||f_{\theta}(s_{t-1}) - s_{t}^{*}||_{2}^{2} + \kappa ||\theta_{[:1]}||_{1} + \lambda ||\theta_{[1:]}||_{2}^{2}$

Extended version with more experiments on our project website:

https://sites.google.com/usc.edu/neuralsim

