
Bench-MR: A Motion
Planning Benchmark for
Wheeled Mobile Robots

Eric Heiden1, Luigi Palmieri2, Leonard Bruns3,
Kai O. Arras2, Gaurav S. Sukhatme1, Sven Koenig1

1 Dept. of Computer Science, University of Southern California, USA
2 Robert Bosch GmbH, Corporate Research, Germany
3 Division of Robotics, Perception and Learning (RPL), KTH, Sweden

https://robot-motion.github.io/bench-mr

Motivation

Benchmarking is crucial to evaluate progress in motion planning
research, find a suitable combination of motion planning components
for a particular application
Lack of specialized benchmarks for nonholonomic,
wheeled mobile robots
Bench-MR:

• Applications in service and intralogistics robotics, autonomous driving, etc.
• Easy to use (high-level Python interface)
• Expandable (support for different back-ends, e.g. OMPL, SBPL)
• Feature-rich (various environment types, procedurally generated scenarios,

planners, extend functions, etc.)
2

Main Related Work

OMPL benchmark (Moll et al., RAL 2015)
• Benchmarking framework for generic robotic systems
• Not providing environments designed for wheeled mobile robots' applications

MovingAI (Sturtevant, TCIAIG 2012)
• Focusing on path findings on grids
• Not considering robot kinodynamic constraints

CommonRoad (Althoff et al., IVS 2017)
• Provides several automated driving scenarios
• Only lanes environments

3

Bench-MR
Motion Planning Benchmark for Wheeled Mobile Robots

4

Architecture

C++ back-end implements
interfaces to planning libraries,
environment types, etc.
Front-end based on Jupyter
notebooks provides high-level
interface to set up benchmarks,
evaluate results
Configuration through JSON files
ensures repeatability of
experiments

5

Environments

Grid-basedPolygon-based

Moving AI Cities dataset

Occupancy grids from images

Parking scenarios

Warehouse navigation

Procedurally generated 6

Procedurally Generated Environments

Corridor-like environments with defined corridor width

Random grids with defined occupancy ratio

7

Procedurally Generated Environments

“Asteroid field” consisting of randomly generated convex polygons

8

Motion Planners

Sampling-based planners
• Feasible planners

RRT, PRM, SPARS, EST, SBL, STRIDE, …
• Asymptotically (near) optimal planners

RRT*, PRM*, BFMT, RRT#, Informed RRT*, CForest, …
Support for sampling from uniform distribution
and deterministic sequences (e.g. Halton)

Lattice-based planners
ARA*, AD*,
MHA*, ANA*

Search-Based
Planning Library

(Likhachev et al. 2003)

Open Motion Planning Library
(Sucan, Moll, Kavraki 2012)

Uniform Halton

9

Extend Functions

Extend functions connect consecutive states on a path
Robot models:

• Kinematic car
• Kinematic single-track model

Steer functions:
• Dubins, Reeds-Shepp
• Continuous Curvature
• POSQ

Motion primitives (SBPL)

10

Post Smoothing Methods

Smoothen path found by a motion planner

Gradient-informed path smoothing (GRIPS)

B-Spline* fit B-spline through vertices to smoothen the path

Shortcut* skip vertices on path to connect directly

Simplify Max* combine B-spline + shortcut

GRIPS move vertices on distance field + shortcut
* from OMPL

11

Optimization Objectives

User-definable objective that is used by the sampling-based planners
• Minimize path length
• Optimize smoothness: minimizes the angle between consecutive path

segments (straight line has zero smoothness) (defined in OMPL)
• Minimize curvature normalized over path length
∑𝑖𝑖 ∫𝜎𝜎𝑖𝑖 𝜅𝜅 �̇�𝜎𝑖𝑖 𝑡𝑡 �̇�𝑝𝜎𝜎𝑖𝑖 𝑡𝑡 2

𝑑𝑑𝑡𝑡 with curvature segments 𝜎𝜎𝑖𝑖
between cusps

• Maximize clearance
(distance to nearest obstacle along the entire path)

12

Collision Checking

Collision detection between grid, polygon environments and robot
shapes represented by a point or polygon (default)
Separating Axis Theorem for CC between convex polygons

Point-based collision detection Polygon-based collision detection
13

Metrics

• Path length
• Computation time (total / per planning phase)
• Clearing distance statistics (mean, median, …)
• Curvature (maximum / normalized /

angle-over-length [AOL])
• Smoothness
• Number of cusps

More metrics can be
added by the user

Computation time per
planning phase

Various planning metrics plotted for
a given benchmark 14

Example
Example that shows how to use Bench-MR

15

Example Notebook
from mpb import MPB
mpb = MPB(config_file = 'benchmark_template.json')
mpb.set_corridor_grid_env(radius = 3)
mpb.set_planners(['rrt', 'rrt_star', 'informed_rrt_star'])
mpb.set_steer_functions(['reeds_shepp'])
mpb.run(runs=3)
mpb.visualize_trajectories()

configuration of C++ back-end
through JSON file

procedurally generated
corridor-like environments

16

Example Notebook (Cont’d)

mpb.plot_planner_stats()

Plot planning statistics for the
defined set of metrics that
have been evaluated

17

Parallelization

Benchmarks can be run in parallel,
results are merged automatically

from mpb import MultipleMPB, MPB

pool = MultipleMPB()
for time in [.5, 1, 10]:

m = MPB()
m["max_planning_time"] = time
m.set_corridor_grid_env()
m.set_planners(['informed_rrt_star'])
m.set_steer_functions(['reeds_shepp'])
pool.benchmarks.append(m)

pool.run_parallel('test_parallel', runs=5)

18

Experiments
Scenarios showcasing the features of Bench-MR

19

Which sampling technique is preferrable?
Benchmarking sampling-based planners using deterministic Halton
sequence vs. uniform sampling

20

Which sampling technique is preferrable?

Planning statistics

21

Halton sampling

Uniform random sampling

Varying Environment Complexity

Benchmarking motion planners on environments of varying complexity

Varying obstacles density

Varying corridor size

22

Varying Environment Complexity

• Reeds-Shepp extend function with a computation time limit of
15 seconds each

• Procedurally generated grids with 100x100 cells 23

Asymptotically Optimal Planners vs.
Feasible Planners with Smoothing
Is there a benefit in using a fast, feasible planner in combination with
post-smoothing over asymptotically optimal motion planners?

Comparison between
• Feasible planners (RRT, EST, SBL, STRIDE) + post-smoothing

algorithms
• Asymptotically (near) optimal planners

(RRT∗, Informed RRT∗, SORRT∗, PRM∗, CForest, BIT∗, SPARS)

Metrics: path length and normalized curvature

24

Asymptotically Optimal Planners vs.
Feasible Planners with Smoothing
Example trajectories

Feasible planner Feasible planner +
post-smoothing

Asymptotically optimal
planner

25

Asymptotically Optimal Planners vs.
Feasible Planners with Smoothing

Comparison performed in random indoor-like grid-based environments
of size 150×150 cells and a desired minimum corridor width of 5 cells

26

Optimization Objectives

How do the paths differ given different optimization criteria?

Path length
Minimum clearance
Normalized curvature

27

Bench-MR: A Motion
Planning Benchmark for
Wheeled Mobile Robots

Eric Heiden1, Luigi Palmieri2, Leonard Bruns3,
Kai O. Arras2, Gaurav S. Sukhatme1, Sven Koenig1

1 Dept. of Computer Science, University of Southern California, USA
2 Robert Bosch GmbH, Corporate Research, Germany
3 Division of Robotics, Perception and Learning (RPL), KTH, Sweden

https://robot-motion.github.io/bench-mr

	Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots
	Motivation
	Main Related Work
	Bench-MR
	Architecture
	Environments
	Procedurally Generated Environments
	Procedurally Generated Environments
	Motion Planners
	Extend Functions
	Post Smoothing Methods
	Optimization Objectives
	Collision Checking
	Metrics
	Example
	Example Notebook
	Example Notebook (Cont’d)
	Parallelization
	Experiments
	Which sampling technique is preferrable?
	Which sampling technique is preferrable?
	Varying Environment Complexity
	Varying Environment Complexity
	Asymptotically Optimal Planners vs.�Feasible Planners with Smoothing
	Asymptotically Optimal Planners vs.�Feasible Planners with Smoothing
	Asymptotically Optimal Planners vs.�Feasible Planners with Smoothing
	Optimization Objectives
	Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots

