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Motivation

Benchmarking is crucial to evaluate progress in motion planning 
research, find a suitable combination of motion planning components 
for a particular application
Lack of specialized benchmarks for nonholonomic, 
wheeled mobile robots
Bench-MR:

• Applications in service and intralogistics robotics, autonomous driving, etc.
• Easy to use (high-level Python interface)
• Expandable (support for different back-ends, e.g. OMPL, SBPL)
• Feature-rich (various environment types, procedurally generated scenarios, 

planners, extend functions, etc.)
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Main Related Work

OMPL benchmark (Moll et al., RAL 2015)
• Benchmarking framework for generic robotic systems
• Not providing environments designed for wheeled mobile robots' applications

MovingAI (Sturtevant, TCIAIG 2012)
• Focusing on path findings on grids
• Not considering robot kinodynamic constraints

CommonRoad (Althoff et al., IVS 2017)
• Provides several automated driving scenarios
• Only lanes environments

3



Bench-MR
Motion Planning Benchmark for Wheeled Mobile Robots
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Architecture

C++ back-end implements 
interfaces to planning libraries, 
environment types, etc.
Front-end based on Jupyter 
notebooks provides high-level 
interface to set up benchmarks, 
evaluate results
Configuration through JSON files 
ensures repeatability of 
experiments
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Environments

Grid-basedPolygon-based

Moving AI Cities dataset

Occupancy grids from images

Parking scenarios

Warehouse navigation

Procedurally generated 6



Procedurally Generated Environments

Corridor-like environments with defined corridor width

Random grids with defined occupancy ratio 
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Procedurally Generated Environments

“Asteroid field” consisting of randomly generated convex polygons
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Motion Planners

Sampling-based planners
• Feasible planners

RRT, PRM, SPARS, EST, SBL, STRIDE, …
• Asymptotically (near) optimal planners

RRT*, PRM*, BFMT, RRT#, Informed RRT*, CForest, …
Support for sampling from uniform distribution
and deterministic sequences (e.g. Halton)

Lattice-based planners
ARA*, AD*,
MHA*, ANA*

Search-Based 
Planning Library

(Likhachev et al. 2003)

Open Motion Planning Library
(Sucan, Moll, Kavraki 2012)

Uniform Halton
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Extend Functions

Extend functions connect consecutive states on a path
Robot models:

• Kinematic car 
• Kinematic single-track model

Steer functions:
• Dubins, Reeds-Shepp
• Continuous Curvature
• POSQ

Motion primitives (SBPL)
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Post Smoothing Methods

Smoothen path found by a motion planner

Gradient-informed path smoothing (GRIPS)

B-Spline* fit B-spline through vertices to smoothen the path

Shortcut* skip vertices on path to connect directly

Simplify Max* combine B-spline + shortcut

GRIPS move vertices on distance field + shortcut
* from OMPL
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Optimization Objectives

User-definable objective that is used by the sampling-based planners
• Minimize path length
• Optimize smoothness: minimizes the angle between consecutive path 

segments (straight line has zero smoothness) (defined in OMPL) 
• Minimize curvature normalized over path length
∑𝑖𝑖 ∫𝜎𝜎𝑖𝑖 𝜅𝜅 �̇�𝜎𝑖𝑖 𝑡𝑡 �̇�𝑝𝜎𝜎𝑖𝑖 𝑡𝑡 2

𝑑𝑑𝑡𝑡 with curvature segments 𝜎𝜎𝑖𝑖
between cusps

• Maximize clearance
(distance to nearest obstacle along the entire path)
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Collision Checking

Collision detection between grid, polygon environments and robot 
shapes represented by a point or polygon (default)
Separating Axis Theorem for CC between convex polygons

Point-based collision detection Polygon-based collision detection
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Metrics

• Path length
• Computation time (total / per planning phase)
• Clearing distance statistics (mean, median, …)
• Curvature (maximum / normalized / 

angle-over-length [AOL])
• Smoothness
• Number of cusps

More metrics can be
added by the user 

Computation time per 
planning phase

Various planning metrics plotted for 
a given benchmark 14



Example
Example that shows how to use Bench-MR
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Example Notebook
from mpb import MPB
mpb = MPB(config_file = 'benchmark_template.json')
mpb.set_corridor_grid_env(radius = 3)
mpb.set_planners(['rrt', 'rrt_star', 'informed_rrt_star'])
mpb.set_steer_functions(['reeds_shepp'])
mpb.run(runs=3)
mpb.visualize_trajectories()

configuration of C++ back-end 
through JSON file

procedurally generated
corridor-like environments
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Example Notebook (Cont’d)

mpb.plot_planner_stats()

Plot planning statistics for the 
defined set of metrics that 
have been evaluated
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Parallelization

Benchmarks can be run in parallel,
results are merged automatically

from mpb import MultipleMPB, MPB

pool = MultipleMPB()
for time in [.5, 1, 10]:

m = MPB()    
m["max_planning_time"] = time
m.set_corridor_grid_env()
m.set_planners(['informed_rrt_star'])
m.set_steer_functions(['reeds_shepp'])
pool.benchmarks.append(m)

pool.run_parallel('test_parallel', runs=5)
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Experiments
Scenarios showcasing the features of Bench-MR

19



Which sampling technique is preferrable?
Benchmarking sampling-based planners using deterministic Halton 
sequence vs. uniform sampling
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Which sampling technique is preferrable?

Planning statistics
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Halton sampling

Uniform random sampling



Varying Environment Complexity

Benchmarking motion planners on environments of varying complexity

Varying obstacles density

Varying corridor size 
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Varying Environment Complexity

• Reeds-Shepp extend function with a computation time limit of 
15 seconds each

• Procedurally generated grids with 100x100 cells 23



Asymptotically Optimal Planners vs.
Feasible Planners with Smoothing
Is there a benefit in using a fast, feasible planner in combination with 
post-smoothing over asymptotically optimal motion planners?

Comparison between
• Feasible planners (RRT, EST, SBL, STRIDE) + post-smoothing 

algorithms
• Asymptotically (near) optimal planners

(RRT∗, Informed RRT∗, SORRT∗, PRM∗, CForest, BIT∗, SPARS)

Metrics: path length and normalized curvature
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Asymptotically Optimal Planners vs.
Feasible Planners with Smoothing
Example trajectories

Feasible planner Feasible planner + 
post-smoothing

Asymptotically optimal 
planner
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Asymptotically Optimal Planners vs.
Feasible Planners with Smoothing

Comparison performed in random indoor-like grid-based environments 
of size 150×150 cells and a desired minimum corridor width of 5 cells
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Optimization Objectives

How do the paths differ given different optimization criteria?

Path length
Minimum clearance
Normalized curvature
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