# Inferring Articulated Rigid Body Dynamics from RGBD Video

Eric Heiden<sup>1</sup>, Ziang Liu<sup>2</sup>, Vibhav Vineet<sup>3</sup>, Erwin Coumans<sup>1</sup>, Gaurav S. Sukhatme<sup>4</sup>









### Motivation

#### Simulation setup is laborious, want to automatically generate sim from real system

 Find kinematic structures of articulated mechanisms

> URDF model of a system defining the objects and joints connecting them



### **Pixel-based observations**



2.

- Find simulation settings
  - Infer parameters of the simulator automatically

# Object recognition

- Find rigid bodies in the first image to initialize simulated scene
- Assume objects in the scene are known
- Detectron2 instance segmentation
- 3D object meshes are scanned via desktop 3D scanner



© EinScan





# Pose tracking

• Set up scene + camera in inverse renderer **nvdiffrast** 

 $f_{\text{rast}}$ : SE(3)<sup>M</sup> × SE(3)  $\rightarrow \mathbb{R}^{H \times W \times C}$ 

• Find world transforms of rigids bodies in the image via pixel-based loss:

 $\underset{[T_0^1, T_0^2, \dots, T_0^M]}{\text{minimize}} \left\| f_{\text{rast}}([T_0^1, T_0^2, \dots, T_0^M], T_0^{\text{cam}}) - \mathbf{x}_{\text{real}} \right\|^2$ 

• Optimize from multiple initial pose guesses, warm-started from previous frame



re

Finding joints and their parameters Consider relative motion  $T_i^j[t]$  between bodies *i* and *j* at time *t* **Prismatic** joint **Revolute** joint Static joint  $\Delta r = T_i^j [t+1] \cdot r - T_i^j [t] \cdot r$  $\Delta p = T_i^j[t+1]. p - T_i^j[t]. p$ Joint axis:  $\|\Delta r\|$ Joint axis:  $\frac{\Delta p}{\|\Delta p\|}$ Static transform  $T_i^J[t]$ **Pivot point:**  $T_i^j[t] \cdot p + \frac{\Delta r + \Delta p}{\|\Delta r\|^2}$ 

For each joint type, find joint parameters for all time steps via RANSAC Memorize joint and model error for best candidate in *cost matrix C* 

### Determine kinematic trees

- Each link can only have 1 parent
- Find minimum spanning trees in cost matrix *C* with root bodies *I*<sub>root</sub>
- These spanning trees are the articulated systems in the scene; how are they "attached" to the world?
  - Use RANSAC as before to find best fitting joint for each root link in  $I_{\rm root}$
  - If no joint type is found, assume the system is floating-base



# Parameter inference

Infer distributions over simulation parameters via

Constrained Stein Variational Gradient Descent (CSVGD)

- Particle-based inference algorithm
- Leverages parallel, differentiable simulation on the GPU
- Uses multiple shooting to improve convergence on long trajectories

**Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation.** Heiden, Denniston, Millard, Ramos, Sukhatme. *ICRA*, 2022.



### Video2Sim Pipeline





# Experiments

### Articulated tree

#### Mechanism with 2 revolute, 2 static joints



# Cartpole in simulation

Recover system from depth video of cartpole simulated in Bullet





#### Model Predictive Path Integral (MPPI) controller

 uses simulation as dynamics model



### Rott's pendulum

#### RGB video of coupled pendulum designed by Nikolaus Rott (1970)

Real



#### Simulation





### Craftsman system

#### Articulated system of wood parts manipulated by Panda robot arm



# Inferring Articulated Rigid Body Dynamics from RGBD Video

Eric Heiden<sup>1</sup>, Ziang Liu<sup>2</sup>, Vibhav Vineet<sup>3</sup>, Erwin Coumans<sup>1</sup>, Gaurav S. Sukhatme<sup>4</sup>

https://eric-heiden.github.io/video2sim







