Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset generation. Moreover, differentiable simulators can enable gradient-based optimization, which is invaluable for calibrating simulation parameters and optimizing controllers. In this work, we present DiSECt - the first differentiable simulator for cutting soft materials. The simulator augments the finite element method (FEM) with a continuous contact model based on signed distance fields (SDF), as well as a continuous damage model that inserts springs on opposite sides of the cutting plane and allows them to weaken until zero stiffness to model crack formation. Through various experiments, we evaluate the performance of the simulator. We first show that the simulator can be calibrated to match resultant forces and deformation fields from a state-of-the-art commercial solver and real-world cutting datasets, with generality across cutting velocities and object instances. We then show that Bayesian inference can be performed efficiently by leveraging the differentiability of the simulator, estimating posteriors over hundreds of parameters in a fraction of the time of black-box methods. Finally, we illustrate that control parameters in the simulation can be optimized to minimize cutting forces via lateral slicing motions.
Update from 10/20/2021: we released the source code and a dataset of high-quality simulations from Ansys LS-DYNA at https://github.com/NVlabs/DiSECt
Very honored that DiSECt won a Best Student Paper Award at #RSS2021! Congrats to my co-authors @milesmacklin, Yashraj Narang, Dieter Fox, @animesh_garg and Fabio Ramos, and thanks for this great collaboration @NVIDIAAI! 🎉 https://t.co/An2RYMXIl2
— Eric Heiden (@eric_heiden) July 16, 2021